The present application is related to the following copending application filed on the same day as this application: “TRIANGULAR SERPENTINE COOLING CHANNELS” by Edward F. Pietraszkiewicz et al. (U.S. application Ser. No. 12/152.370). This application is incorporated herein by this reference.
The present invention relates to gas turbine engine blades. In particular, the present invention relates to the internal cooling configuration of turbine blades.
A gas turbine engine commonly includes a fan, a compressor, a combustor, a turbine, and an exhaust nozzle. During engine operation, working medium gases, for example air, are drawn into and compressed in the compressor. The compressed air is channeled to the combustor where fuel is added to the air and the air/fuel mixture is ignited. The products of combustion are discharged to the turbine section, which extracts a portion of the energy from these products to power the fan and compressor. The fan and compressor together with the energy in the combustion products not used by the turbine to drive the fan and compressor produce useful thrust to power, for example, an aircraft in flight.
The compressor and turbine commonly include alternating stages of rotor blades and stator vanes. Compressor and turbine blades and vanes often include complex, contoured airfoil geometries designed to optimally interact with the working medium gas passing through the engine. Additionally, the operating temperatures of some engine stages, such as in the high pressure turbine stages, may exceed the material limits of the blades and therefore necessitate cooling the blades. Cooled blades may include cooling channels in various configurations through which a coolant, such as compressor bleed air, is directed to convectively cool the blade. Blade cooling channels may be oriented spanwise from the root to the tip of the blade or axially between leading and trailing edges. The channels may be fed by one or more supply channels located toward the root, where the coolant flows radially outward from the root to tip, in what is sometimes referred to as an “up-pass.” Alternatively, the channels may be fed by one or more supply channels located toward the tip of the blade, in a so-called “down-pass.” In addition to individual up and down passes, some blades include cooling channels in a serpentine configuration consisting of several adjacent up and down-passes proceeding axially forward or aftward through the blade. The blades may also include other cooling features, such as film cooling holes for exhausting the coolant from the cooling channels over the exterior surface of the blade, as well as impingement cooling walls, trip strips, and turbulators.
Prior turbine blade designs have continually sought to decrease blade temperatures through cooling. A particular challenge in prior cooled blades lies in the mid-span of blades including serpentine cooling circuits. The coolant in the final passes of serpentine circuits is relatively hot and has relatively low pressure, because heat has been transferred from the blade to the coolant and pressure has been lost in the coolant as it passes through the circuit. The increased coolant temperatures result in reduced cooling effectiveness/increased temperatures in the blade between the serpentine circuit and the leading edge. Because the leading edge of the blade encounters the hottest working medium gas flow temperatures, it is especially advantageous to cool the leading edge as much as possible. Unfortunately, the increased temperatures of the blade aft of the leading edge, caused for example by the hot temperatures in the final pass of a serpentine circuit, have the effect of counteracting the effectiveness of any leading edge cooling techniques employed. The pressure drop in the coolant in the serpentine circuit presents another common design challenge in prior cooled blades: maintaining a sufficiently high backflow margin (“BFM”). BFM is the difference between the fluid pressure of the coolant in the internal channels of the blade and the local static pressure at, for example, a film cooling exhaust hole. In the event BFM is too low, there is a risk that hot working medium gas will be ingested into the internal channels of the blade, thereby counteracting the effectiveness of cooling the blade. BFM is of particular concern in blades including serpentine cooling circuits, because BFM generally decreases as the coolant flows through the circuit. Although significant advances have been made in cooling configurations, a need still exists to improve the effectiveness of cooled turbine blades.
A cooled airfoil includes a concave pressure wall extending radially from a base to a tip of the airfoil, a convex suction wall connected to the concave pressure wall at a leading edge and a trailing edge spaced axially from the leading edge, and a plurality of cooling channels formed between the concave pressure wall and the convex suction wall and configured to receive a cooling fluid supply from the base of the airfoil. The cooling channels include a leading edge channel extending radially from the base toward the tip, a trailing edge channel extending radially from the base toward the tip and in flow communication with a plurality of trailing edge apertures adapted to exhaust cooling fluid to the exterior of the airfoil, a serpentine cooling circuit including a plurality of channels, and a dedicated up-pass channel extending radially from the base toward the tip between the leading edge channel and the forward most channel of the plurality of channels in the serpentine cooling circuit.
Cooling channels 50 are formed between concave pressure wall 42 and convex suction wall 44 and configured to receive cooling fluid from supply channels 36a, 36b, 36c, and 36d. Cooling channels 50 include leading edge channel 52, trailing edge channel 54, serpentine cooling circuit 56, and dedicated up-pass channel 58. Leading edge channel 52 extends radially from the base toward the tip of airfoil 40 and is in flow communication with supply channel 36a. Trailing edge channel 54 extends radially from the base toward the tip and is in flow communication with supply channel 36d and trailing edge apertures, such as holes and/or slots, adapted to exhaust cooling fluid to the exterior of airfoil 40. Serpentine circuit 56 includes first channel 56a, second channel 56b, and third channel 56c. First channel 56a is forward of and adjacent to trailing edge channel 54 and extends radially from the base toward the tip of airfoil 40. First channel 56a is in flow communication with supply channel 36c. Second channel 56b is in flow communication with first channel 56a and extends radially adjacent the tip toward the base of airfoil 40. Third channel 56c is in flow communication with second channel 56b and extends radially from the base toward the tip of airfoil 40. Dedicated up-pass channel 58 extends radially from the base toward the tip of airfoil 40 between leading edge channel 52 and third channel 56c of serpentine circuit 56 and is in flow communication with supply channel 36b.
During engine operation, blade 32 may be cooled using, for example, air bled from compressor 16 shown in
Many factors affect the cooling of gas turbine engine blades and vanes, such as blade 32. A constant challenge in turbine blade design is reducing the temperature of the blade as much as possible through the use of coolant and in particular reducing the temperature of the blade in critical areas such as the leading edge. Cooled blades and vanes according to the present invention, such as blade 32 shown in
Another common challenge in internally cooled blades is maintaining a sufficiently high BFM, which is the difference between the fluid pressure of the coolant in the internal channels of the blade and the local static pressure at, for example, a film cooling exhaust hole. In the event the BFM is too low, there is a risk that hot working medium gas will be ingested into the internal channels of the blade and thereby counteract the effectiveness of cooling the blade. BFM is of particular concern in blades including serpentine cooling channels, because the pressure of the coolant drops as the flow progresses through the up and down-pass channels of the serpentine cooling circuit. Embodiments of the present invention, such as blade 32 shown in
Cooled blades and vanes according to the present invention have several advantages over prior gas turbine engine blades and vanes. Embodiments of the present invention generally increase film cooling effectiveness and reduce blade temperatures in the mid-span of the blade through decreased cooling fluid temperature in the dedicated up-pass channel and the final up-pass of the serpentine circuit. Also significant, is the insulating effect on the leading edge cooling channel and cavity from relatively high temperatures in the final pass of the serpentine circuit by the interposition of the dedicated up-pass channel between the leading edge and the serpentine circuit. Finally, embodiments of the present invention increase BFM in the mid-span of the blade by providing a dedicated up-pass cooling channel in conjunction with a serpentine cooling circuit with fewer up and down-pass channels. Specifically, high fluid pressure, and therefore increased BFM, in the dedicated up-pass channel is maintained, because the channel is fed directly by a supply channel in the root of the blade. The presence of the dedicated up-pass channel also reduces the number of up and down-pass channels that may be necessary in the serpentine cooling circuit, thereby maintaining relatively higher fluid pressure in the respective up and down-pass channels of the serpentine cooling circuit.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5156526 | Lee et al. | Oct 1992 | A |
5348446 | Lee et al. | Sep 1994 | A |
5387085 | Thomas et al. | Feb 1995 | A |
5387086 | Frey et al. | Feb 1995 | A |
5403159 | Green et al. | Apr 1995 | A |
5591007 | Lee et al. | Jan 1997 | A |
5660524 | Lee et al. | Aug 1997 | A |
5669759 | Beabout | Sep 1997 | A |
5700131 | Hall et al. | Dec 1997 | A |
5931638 | Krause et al. | Aug 1999 | A |
5967752 | Lee et al. | Oct 1999 | A |
6019579 | Fukuno et al. | Feb 2000 | A |
6036440 | Tomita et al. | Mar 2000 | A |
6099252 | Manning et al. | Aug 2000 | A |
6126396 | Doughty et al. | Oct 2000 | A |
6139269 | Liang | Oct 2000 | A |
6206638 | Glynn et al. | Mar 2001 | B1 |
6422817 | Jacala | Jul 2002 | B1 |
6471479 | Starkweather | Oct 2002 | B2 |
6595748 | Flodman et al. | Jul 2003 | B2 |
6672836 | Merry | Jan 2004 | B2 |
6974308 | Halfmann et al. | Dec 2005 | B2 |
6984103 | Lee et al. | Jan 2006 | B2 |
7131818 | Cunha et al. | Nov 2006 | B2 |
7186082 | Mongillo et al. | Mar 2007 | B2 |
7293961 | Lee et al. | Nov 2007 | B2 |
7296973 | Lee et al. | Nov 2007 | B2 |
7413001 | Wang et al. | Aug 2008 | B2 |
7413407 | Liang | Aug 2008 | B2 |
20030133795 | Manning et al. | Jul 2003 | A1 |
20060051208 | Lee et al. | Mar 2006 | A1 |
20060222493 | Liang | Oct 2006 | A1 |
20070147997 | Cunha et al. | Jun 2007 | A1 |
20070231138 | Levine et al. | Oct 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090285684 A1 | Nov 2009 | US |