1. Field of the Invention
The invention relates generally to gas turbine engines, and more particularly to controlling the radial clearance between a turbine rotor blade tip and a stator shroud assembly.
2. Description of Related Prior Art
In a turbine engine, combustion gases pass across rotatable turbine blades to convert the energy associated with combustion gases into mechanical motion. A shroud assembly tightly encircles the turbine blades to ensure that combustion gases are forced over the turbine blades and do not pass radially around the turbine blades. It is desirable to maintain the smallest possible gap between the tips of the turbine blades and the shroud assembly to maximize the efficiency of the turbine engine. However, a challenge in maintaining the smallest possible gap arises because the turbine blades can expand radially during various phases of engine operation at a rate that is much greater than a rate at which the shroud assembly can radially expand. For example, when the power output of the turbine engine rapidly increases, such as during take-off in a turbine engine used for aircraft propulsion, the turbine blades will increase in radial length rapidly and the tips of the turbine blades may penetrate the inner linings of the shroud assembly. This could damage both the turbine blades and the shroud assembly. Also, this event can compromise the capacity of the shroud assembly to maintain the smallest possible gap during periods of relatively low power production.
In summary, the invention is a method for adjusting a clearance between a blade tip of a turbine engine and a blade track spaced radially outward of the blade tip is disclosed herein. The method includes the step of operably coupling an elongate member to a blade track in a turbine engine. The method also includes the step of directing a fluid stream having a temperature in proximity to the elongate member. The temperature of the fluid stream can change over time. The method also includes the step of transferring heat between the fluid stream and elongate member to a change a size of the elongate member and move the blade track radially relative to a centerline axis of the turbine engine. An exemplary apparatus for carrying out the method is also disclosed.
Advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description of exemplary embodiments when considered in connection with the accompanying drawings wherein:
A plurality of different embodiments of the invention are shown in the Figures of the application. Similar features are shown in the various embodiments of the invention. Similar features have been numbered with a common reference numeral and have been differentiated by an alphabetic suffix. Also, to enhance consistency, the structures in any particular drawing share the same alphabetic suffix even if a particular feature is shown in less than all embodiments. Similar features are structured similarly, operate similarly, and/or have the same function unless otherwise indicated by the drawings or this specification. Furthermore, particular features of one embodiment can replace corresponding features in another embodiment or can supplement other embodiments unless otherwise indicated by the drawings or this specification.
The invention provides a method that is at least partially passive for radially moving a blade track relative to a centerline axis in a turbine engine. It may be desirable to practice some embodiments of the invention with some “active system” components such as controllers, sensors and actuators; but the first exemplary embodiment of the invention demonstrates that such components are not required for practicing the invention. Active system components add cost, complexity and bulk to the turbine engine. However, in some situations, the value of a partially-active system outweigh the drawbacks. Several non-exclusive examples of active components that can be included in alternative embodiments of the invention are identified throughout this disclosure.
In the exemplary embodiments of the invention described herein, an elongate member can be heated and cooled by flowing a stream of fluid over the elongate member. Thermal energy can be transferred between the fluid stream and the elongate member, thereby changing the size of the elongate member and the distance between first and second ends of the elongate member. This change in size can be utilized to move a blade track. Thus, the temperature of the stream can change in response to changes in operation, resulting in the elongate member growing and shrinking during the operation of the turbine engine.
“Elongate” refers to the member being relatively thin and relatively long. Making the member thin enhances the of transfer of thermal energy. For example, a thin member has a relatively greater ratio of surface area to mass. As a result, temperature changes can occur throughout the member more quickly. In the exemplary embodiments of the invention, making the member thin results in quicker and more uniform temperature changes in response to changes in the temperature of the fluid stream.
Making the member long enhances the magnitude of size change for a particular change in temperature. For example, the formula for size change is T×L×C, where T represents the change in the member's temperature, L represents the length of the member at a starting temperature, and C represents the member's coefficient of linear expansion. Thus, the longer the member is originally, the greater the size change in response to a particular temperature change. In the exemplary embodiments of the invention, making the member long results in slight temperature changes producing non-negligible changes in size.
The first exemplary embodiment of the invention is shown in
The first exemplary embodiment of the invention includes an apparatus or system 28 for carrying out a method for adjusting the clearance or gap between the blade tip 16 the blade track 22. The exemplary apparatus 28 can include a shroud 30 defining a chamber 32. The exemplary chamber 32 is annular, surrounding the centerline axis 14. However, in alternative embodiments of the invention the chamber 32 can be shaped differently.
The chamber 32 can be spaced radially outward of the blade track 22 relative to the centerline axis 14. The exemplary apparatus 28 can also include an elongate member 34 positioned in the chamber 32. The exemplary apparatus 28 can also include a mechanical linkage 36 operably coupling the elongate member 34 to the blade track 22. As will be set forth in greater detail below, the chamber 32 can receive a fluid stream that changes in temperature over time, bathing the elongate member 34 and causing the elongate member 34 to change size. The exemplary mechanical linkage 36 is operable to passively convert a change size of the elongate member 34 into motion of the blade track 22.
As set forth above, the chamber 32 can receive a fluid stream that changes temperature during operation. The temperature of the fluid stream can vary or change so that the elongate member 34 can change size, shrinking or growing. The fluid stream can be received from a compressor section 38 (shown schematically) disposed along the centerline axis 14 of the turbine engine 10. Alternatively, the fluid stream can be drawn from a source other than a compressor section 38 in alternative embodiments of the invention, including structures from hotter areas of the turbine engine 10. The invention can also be practiced such that ambient air is used as the fluid to change a size of the elongate member 34. The invention can also be practiced with two different sources for the fluid stream: a first source for relatively cool fluid and a second, different source for relatively hot fluid. For example, a first stream of “cool” fluid can be drawn from the compressor section 38 to shrink the elongate member 34 and a second stream of “hot” fluid can be drawn from another portion of the turbine engine 10 to grow the elongate member 34.
The invention can also be practiced with one or more heat exchangers for the fluid stream. For example, the fluid stream can be drawn from one or more sources and passed through one or more heat exchangers prior to be received in the chamber 32. Such an embodiment of the invention could also include active elements such as sensors, valves and a controller. A sensor can be positioned upstream of the chamber 32 to sense a temperature of the fluid stream. A controller can communicate with the sensor. If the sensed temperature of the fluid stream is not preferred based on programmed logic, the controller can control a valve in order to divert the fluid stream through a heat exchanger prior to being received in the chamber 32. Alternatively, if the controller determines the temperature sensed by the sensor is appropriate based on programmed logic, the controller can permit the fluid stream to pass directly to the chamber 32.
In the exemplary embodiment of the invention, the fluid stream can be directed to the chamber 32 from the compressor section 38 along a fluid pathway 40 (shown schematically). The fluid stream can be drawn from an outlet of the compressor section 38 or from a bleed at an inter-stage portion of the compressor section 38. In the exemplary embodiment of the invention, the temperature of the fluid stream corresponds to the operating conditions of the turbine engine 10. For example, if the turbine engine 10 is producing power at a relatively high rate, the temperature of a fluid stream drawn from the compressor section 38 can be relatively hot. Alternatively, if the turbine engine 10 is producing power at a relatively low rate, the temperature of a fluid stream drawn from the compressor section 38 can be relatively cool.
The terms “hot” and “cool” are relative; there are no specific temperature ranges or limitations to distinguish between “hot” and “cool”. The terms are used to refer to the exchange of thermal energy between the passive elongate member 34 and the fluid stream regardless of the actual temperature of the fluid stream. When the fluid is “hot”, for example, thermal energy can be transferred to elongate member 34 from the fluid stream and the elongate member 34 can increase in size. When the fluid is “cool”, thermal energy can be transferred from elongate member 34 to the fluid stream and the elongate member 34 can decrease in size. Furthermore, as to the exemplary embodiment of the invention, the range of temperature occurring in a turbine engine during operation can be hundreds of degrees. A particular temperature for the fluid stream can be “cool” at one point during operation of the engine and can be “hot” at a different point during operation.
Referring now to
The exemplary elongate member 34 can be an individual arm extending along the arcuate axis 82. In alternative embodiments of the invention, the elongate member 34 can be straight or be partially straight and partially arcuate. Also, in alternative embodiments of the invention, the elongate member 34 can be a plurality of arms or some other structure operably connected to a single blade track 22. In addition, the Figures of the application show a single apparatus 28 associated with a single blade track 22. However, an alternative embodiment of the invention can include a plurality of apparatus 28, one for each of a plurality of blade tracks 22 in the turbine engine 10. Also, alternative embodiments of the invention can include a single apparatus 28 operably coupled to a plurality of individual blade tracks 22.
The exemplary elongate member 34 can extend transverse or oblique relative to the centerline axis 14, perpendicular or less than perpendicular. In other words, the axis 82 can be defined in a plane that is perpendicular to the centerline axis 14. Extending the elongate member 34 transverse or oblique allows the elongate member 34 to be relatively long while minimizing the envelope size of the apparatus 28 along the centerline axis 14. In other words, the apparatus 28 can be sized smaller by extending the elongate member 34 transverse or oblique to the centerline axis 14 rather than extending the elongate member 14 fully parallel to the centerline axis 14. However, in alternative embodiments of the invention, the elongate member 34 may extend at least in part along the centerline axis 14 or be fully parallel to the centerline axis 14 if desired. In other words, the axis 82 can be defined in a plane that is not perpendicular to the centerline axis 14 and yet is also not the plane in which the centerline axis 14 is defined. Alternatively, the axes 14, 82 can be defined in the same plane in alternative embodiments of the invention.
The exemplary elongate member 34 can extend through a slot 46 in the shroud 30 such that the second end 44 is disposed outside of the chamber 32. The slot 46 allows the second end 44 to move as the elongate member 34 changes size. The distance between the first and second ends 42, 44 changes when the elongate member 34 changes size. The second end 44 is operably coupled to the mechanical linkage 36. The exemplary second end 44 can be limited in movement only in the sense that the second end 44 is operably coupled to the mechanical linkage 36.
As set forth above, the exemplary mechanical linkage 36 operably couples the second end 44 of the elongate member 34 to the blade track 22 such that a change in size of the elongate member 34, or change in the distance between the first and second ends 42, 44, is passively converted into motion of the blade track 22 away from or towards the centerline axis 14. In the first exemplary embodiment of the invention, the mechanical linkage 36 can include a wheel 48 and a cam member 50. The mechanical linkage 36 can also include a cam follower 52, shown in
With reference to both
The wheel 48 can be positioned against the cam member 50 such that rotation of the wheel 48 moves the cam member 50 about the centerline axis 14. The wheel 48 and cam member 50 can include respective and reciprocal gear teeth (not shown) to effectuate movement or can include complementary surfaces that frictionally engage one another. With reference to
The cam member 50 can slidably contact the cam follower 52 such that movement of the cam member 50 moves the cam follower 52 radially relative to the centerline axis 14. The cam follower 52 can be fixed to the blade track 22 to move radially together. The exemplary cam follower 52 is integral with the outer portion 26 of the blade track 22. In alternative embodiments of the invention, the cam follower 52 can be separately-formed relative to the blade track 22.
The wheel 48 can be supported for rotating about the axis 54 by a fixed plate 64. The cam member 50 can be guided in pivoting movement about the centerline axis 14 by one or more posts 66. The posts 66 can be received in slots (not shown) in the cam member 50. The cam follower 52 can be supported for radial movement by the posts 66. A biasing member (not shown) can urge the cam follower 52 against the cam member 50.
The exemplary mechanical linkage 36 can be operable to both multiply and dampen movement generated by the change in distance between the first end 42 (shown in
The amount or distance that the second end 44 moves can be viewed as the change in the distance between the first end 42 (shown in
The mechanical linkage 36 can include a movement-dampening structure to dampen the movement of the second end 44. In the first exemplary embodiment of the invention, the blade track 22 can be moved intermittently as the distance between the first and second ends 42, 44 changes. It can be desirable to dampen the movement of the second end 44 so that the blade track 22 is not moving continuously. In the first exemplary embodiment of the invention, the cooperation between the cam member 50 and the cam follower 52 acts as a movement-dampener. The exemplary cam member 50 can define a stepped profile surface including alternating landing portions 68, 70, 72, 74 and ramp portions 76, 78, 80 (referenced only in
As set forth above, embodiments of the invention, including the exemplary embodiment, can be practiced with active elements. For example, sensors could be positioned at various locations, such as the chamber 32, to sense temperature. The signal output of such sensors can be received, processed, and acted on by a controller to control the operation of one or more valves in order to direct the fluid stream. The operations of such a controller can include the selection of a source for the fluid stream, the flow rate of the fluid stream, and the path taken by the fluid stream prior to reaching the chamber 32.
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3039737 | Kolthoff, Jr. | Jun 1962 | A |
4069662 | Redinger, Jr. et al. | Jan 1978 | A |
4127357 | Patterson | Nov 1978 | A |
4230436 | Davison | Oct 1980 | A |
4358926 | Smith | Nov 1982 | A |
4487016 | Schwarz et al. | Dec 1984 | A |
4513567 | Deveau et al. | Apr 1985 | A |
4632635 | Thoman et al. | Dec 1986 | A |
4657479 | Brown et al. | Apr 1987 | A |
4683716 | Wright et al. | Aug 1987 | A |
4815928 | Pineo et al. | Mar 1989 | A |
5018942 | Ciokajlo et al. | May 1991 | A |
5035573 | Tseng et al. | Jul 1991 | A |
5048288 | Bessette et al. | Sep 1991 | A |
5049033 | Corsmeier et al. | Sep 1991 | A |
5054997 | Corsmeier et al. | Oct 1991 | A |
5056988 | Corsmeier et al. | Oct 1991 | A |
5064343 | Mills | Nov 1991 | A |
5096375 | Ciokailo | Mar 1992 | A |
5104287 | Ciokajlo | Apr 1992 | A |
5116199 | Ciokajlo | May 1992 | A |
5127793 | Walker et al. | Jul 1992 | A |
5212940 | Glover | May 1993 | A |
5228828 | Damlis et al. | Jul 1993 | A |
5261228 | Shuba | Nov 1993 | A |
5344284 | Delvaux et al. | Sep 1994 | A |
5407320 | Hutchinson | Apr 1995 | A |
5553999 | Proctor et al. | Sep 1996 | A |
5562408 | Proctor et al. | Oct 1996 | A |
5593277 | Proctor et al. | Jan 1997 | A |
5601402 | Wakeman et al. | Feb 1997 | A |
5772400 | Pellow | Jun 1998 | A |
5791872 | Owen | Aug 1998 | A |
5871333 | Halsey | Feb 1999 | A |
6035929 | Friedel et al. | Mar 2000 | A |
6089821 | Maguire et al. | Jul 2000 | A |
6116852 | Pierre et al. | Sep 2000 | A |
6393331 | Chetta et al. | May 2002 | B1 |
6487491 | Karpman et al. | Nov 2002 | B1 |
6652227 | Fried | Nov 2003 | B2 |
6722137 | Proctor et al. | Apr 2004 | B2 |
6814538 | Thompson | Nov 2004 | B2 |
6877952 | Wilson | Apr 2005 | B2 |
6910851 | Franconi et al. | Jun 2005 | B2 |
6925814 | Wilson et al. | Aug 2005 | B2 |
6935836 | Ress, Jr. et al. | Aug 2005 | B2 |
6942445 | Morris et al. | Sep 2005 | B2 |
7096673 | Little et al. | Aug 2006 | B2 |
7210899 | Wilson, Jr | May 2007 | B2 |
20010023581 | Ojiro et al. | Sep 2001 | A1 |
20040018084 | Halliwell et al. | Jan 2004 | A1 |
20050050901 | Little | Mar 2005 | A1 |
20050109016 | Ullyott | May 2005 | A1 |
20050129499 | Morris et al. | Jun 2005 | A1 |
20050238480 | Phipps et al. | Oct 2005 | A1 |
20070003410 | Chehab | Jan 2007 | A1 |
20070020095 | Dierksmeier et al. | Jan 2007 | A1 |
20070110564 | Leach et al. | May 2007 | A1 |
20090208321 | O'Leary | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
4309199 | Sep 1994 | DE |
10196404 | Jul 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20090266082 A1 | Oct 2009 | US |