The present invention relates to a blade track assembly for a gas turbine engine, and more particularly to a blade track assembly having low stress attachment configurations.
Turbine blade tracks, sometimes ailed turbine shroud seals are designed to provide a circumferential flow path around a turbine rotor. The inner surface of the blade track is typically positioned as close to the tips of the turbine rotor blades as possible without actually engaging during operation. The clearance between the tip of the blade and the blade track is minimized so as to provide higher operating efficiencies as understood by those skilled in the art. The inner surface of the blade tracks operate at the temperature of the hot exhaust gases flowing therethrough which can be well in excess of 2000° F. In addition to high temperatures, the gas path also operates at elevated pressures relative to ambient conditions. The blade tracks are supported through connections to static structure radially outward and opposite the gas path side of the inner surface. The blade track connections can be placed under high stress due to high thermal and high pressure gradients across the blade track and over time a mechanical failure can occur. Some existing blade track systems have various shortcomings, drawbacks, and disadvantages relative to certain applications. Accordingly, there remains a need for further contributions in this area of technology.
One embodiment of the present invention is a unique turbine blade track configuration and assembly. Other embodiments include unique apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engine power systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the following description and drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is hereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
Exemplary embodiments of the disclosure are described herein with reference to
Within a gas turbine engine, stationary shroud segments (also known as “blade track segments”) are typically assembled circumferentially about an axial flow engine axis and are positioned radially outward from rotating turbine blades. A clearance between the tips of the rotating turbine blades and the juxtaposed surface of the blade tracks (also known as “shroud clearance” or “blade clearance”) is often kept to a minimum distance so as to enhance the operating efficiency of the gas turbine engine.
Referring to
The segment portion 102 generally includes a segment body 106 having a radially-facing inner surface 108, an opposite radially-facing outer surface 110, a first axially-facing surface 112, and a second axially-facing surface 114 opposite the first axially-facing surface 112. Generally, the radially-facing inner surface 108 is juxtaposed with respect to the tips of the rotary turbine blades, and is exposed to high pressures and temperatures of the gas flow path that drives the rotary turbine blades. Thus, the distance between the radially-facing inner surface 108 and the blade tips of the rotary turbine blades (not shown in the drawings) corresponds to the blade or shroud clearance. The radially-facing outer surface 110 generally faces toward the outer casing of the turbine engine and is exposed to pressures and temperatures that are typically significantly lower than those exerted onto the radially-facing inner surface 108.
The attachment portion 104a is structured and positioned such that a midpoint thereof is spaced apart from the second axially-facing surface 114 along the axial direction by a distance x1. Similarly, the attachment portion 104b is structured and positioned such that a midpoint thereof is spaced apart from the first axially-facing surface 112 along the axial direction by a distance x2. Distance x1 may be the same as or different from (i.e., greater than or less than) distance x2. In one embodiment; midpoints of the attachment portions 104a, 104b may be spaced apart from one another along the axial direction by a distance x3. Distance x3 may be the same as one or both of distances x1 and x2, or may be different from (i.e., greater than or less than) one or both of distances x1 and x2. In general the total distance (x1+x2+x3), is at least equal to the width of the tips of the corresponding turbine blades as defined by a chord length between the leading and trailing edges at the tip of the blade.
Each of the attachment portions 104a and 104b includes a transition region 116, an extension region 118, and a coupling region 120. The transition region 116 extends radially outward from the radially-facing outer surface 110 to the extension region 118 and forms a generally arcuate transition surface 122. The width w1 of the attachment portions 104a, 104b at the radially-facing outer surface 110 of the segment body 106 along the axial direction (i.e., the axial width of the transition region 116 at its widest point) may be less than one-half of the axial length of the segment body 106 (i.e., the distance separating the first and second axially-facing surfaces 112, 114). In any event, the width w1 will be designed such that the attachment portions 104 can withstand operational loads transmitted by the blade track. The extension region 118 extends radially outward from the transition region 116 to the coupling region 120, and may have a length selected to ensure an adequate blade clearance. However, in other embodiments, the extension region 118 may be omitted. In the illustrated embodiment, the coupling region 120 has a trapezoid-shaped (also referred to as a “dovetail”) cross section forming pairs of axially-opposite mating surfaces 124, and an attachment termination surface 126 extending between the opposite mating surfaces 124. The axially-opposite mating surfaces 124 generally diverge away from one another along a radially outward direction (i.e., toward the attachment termination surface 126), or generally converge toward one another along a radially inward direction (i.e., toward the radially-facing outer surface 110 of the segment body 106). As will be discussed in greater detail below, the axially-opposite mating surfaces 124 of the coupling region 120 can engage with corresponding mating surfaces of a hanger to thereby secure the blade track 100 within a blade track assembly of a gas turbine engine. In the illustrated embodiment, the coupling region 120 of the attachment portion 104 can carry high loads without developing undesirably high localized stresses.
Referring to
The circumferentially-facing surfaces 206 of the attachment portion 104 can extend across the extension region 118 and the coupling region 120. As exemplarily illustrated in
Referring to
Referring now to
Referring to
As mentioned above, the segment portion 102 and the attachment portions described herein can be provided as an integrally-formed ceramic matrix composite (CMC) structure. In one embodiment, such a CMC structure may be formed by providing a preform structure and providing a ceramic matrix material (i.e., aluminum oxide, zirconium oxide, silicon oxide, silicon carbide, or the like or a combination thereof) which, for example, infiltrates the preform structure. Generally, the preform structure includes a reinforcement material (e.g. woven or unwoven fibers, whiskers, or the like, formed of carbon, silicon oxide, silicon carbide, aluminum oxide, aluminum nitride, mullite, titanium boride, zirconium oxide, or the like or a combination thereof). The ceramic matrix material may be provided by any suitable process such as chemical vapor deposition, chemical vapor infiltration, dipping, spraying, electroplating, or the like or a combination thereof.
Referring to
In one embodiment, as will be discussed in greater detail below, the preform core 602 may include reinforcement material (i.e., provided as any suitable arrangement of woven or unwoven fibers, whiskers, or the like, formed of one or more materials such as carbon, silicon oxide, silicon carbide, aluminum oxide, aluminum nitride, mullite, titanium boride, zirconium oxide, or the like or a combination thereof). In another embodiment, the preform core 602 may be provided as a monolithic piece formed from a material such as silicon carbide. Each reinforcement wrap may be formed of one or more plies of reinforcement material. In one embodiment, each reinforcement wrap is formed of four plies of reinforcement material. In another embodiment, the number of plies of reinforcement material in one or more of the first, second and third reinforcement wraps 604, 606 and 608 may be the same as or different from the number of plies of reinforcement material in any other of the first, second and third reinforcement wraps 604, 606 and 608. In one embodiment, the reinforcement material included in one or more of the first, second and third reinforcement wraps 604, 606 and 608 may be the same as or different from the reinforcement material in any other of the first, second and third reinforcement wraps 604, 606 and 608. In another embodiment, the orientation of one or more plies of reinforcement material in one or more of the first, second and third reinforcement wraps 604, 606 and 608 may be the same as or different from the orientation of one or more plies of reinforcement material in any other of the first, second and third reinforcement wraps 604, 606 and 608.
The first reinforcement wrap 604 is disposed on a radially-facing inner surface 610 of the preform core 602, the second reinforcement wrap 606 is disposed on a second axially-facing surface 612 and a radially-facing outer surface 614 of the preform core 602, and the third reinforcement wrap 608 is disposed on the first and second reinforcement wraps 604 and 606. In one embodiment, the first and second reinforcement wraps 604 and 606 extend axially beyond the second axially-facing surface 612 of the preform core 602 to form a rim portion 616. The third reinforcement wrap 608 may be disposed on the lower, side and upper surface of the rim 616 to thereby surround the rim 616. In the illustrated embodiment, the third reinforcement wrap 608 is provided such that an edge 618 of the third reinforcement wrap 608 is substantially coplanar with preform termination surface 620 of the second reinforcement wrap 606. In other embodiments, the third reinforcement wrap 608 can be provided such that the edge 618 is recessed below the preform termination surface 620, or may alternatively be provided such that the edge 618 is positioned beyond the preform termination surface 620.
Constructed as described above, the exterior surfaces of the preform structure 600 include the preform termination surface 620, a radially-facing inner surface 622, a radially-facing outer surface 624, a second axially-facing surface 626, a transition surface 628, and an inclined surface 630. Upon providing the ceramic matrix material to infiltrate the preform structure 600, the attachment termination surface 126, radially-facing inner surface 108, radially-facing outer surface 110, second axially-facing surface 114, transition surface 122 and mating surface 124 can be formed to generally correspond to the preform termination surface 620, radially-facing inner surface 622, radially-facing outer surface 624, second axially-facing surface 626, transition surface 628 and inclined surface 630.
In one embodiment, the preform structure 600 may be formed by providing the preform core 602, disposing the radially-facing inner surface 610 of the preform core 602 on the first reinforcement wrap 604, and disposing the second reinforcement wrap 606 on the first reinforcement wrap 604 and over the axially rearward and radially-facing outer surfaces 612 and 614 of the preform core 602. The resulting structure can then be impregnated with a material such as a wax, a polymer, or the like, and optionally machined as desired. Next, the third reinforcement wrap 608 may be disposed on the first and second reinforcement wraps 604 and 606 and around the rim 616. The resulting structure can then be subjected to heat so as to melt, burn or otherwise remove any wax, polymer or the like, from the preform core 602 and the first and second reinforcement wraps 604 and 606, thereby forming the preform structure 600.
Referring to
The reinforcement wrap 704 may be provided, as exemplarily discussed above, with respect to any of the reinforcement wraps 604, 606 and 608. In the illustrated embodiment, the reinforcement wrap 704 is disposed on the radially-facing inner surface 610 of the preform core 602, an exterior surface 706 of the reinforcing rod 702, and on the axially rearward and radially-facing outer surfaces 612 and 614, respectively, of the preform core 602. As exemplarily illustrated, the reinforcement wrap 704 is folded or wrapped about the reinforcing rod 702. As a result, different regions of the reinforcement wrap 704 may contact each other at region 708.
Constructed as described above, exterior surfaces of the preform structure 700 includes a preform termination surface 710, a radially-facing inner surface 712, a radially-facing outer surface 714, a second axially-facing surface 716, a transition surface 718, and an inclined surface 720. Upon providing the ceramic matrix material to infiltrate the preform structure 700, the radially-facing inner surface 108, radially-facing outer surface 110, second axially-facing surface 114, transition surface 122 and mating surface 124 can be formed to generally correspond to the preform termination surface 710, radially-facing inner surface 712, radially-facing outer surface 714, second axially-facing surface 716, transition surface 718, and inclined surface 720.
In one embodiment, the preform structure 700 may be formed by providing the preform core 602 and the reinforcing rod 702, positioning the reinforcing rod 702 and the radially-facing inner surface 610 of the preform core 602 on the reinforcement wrap 704 and folding the reinforcement wrap 704 about the reinforcing rod 702 and over the axially rearward and radially-facing outer surfaces 612 and 614 of the preform core 602. The resulting structure can then be subjected to heat so as to melt, burn or otherwise remove any wax, polymer or the like, from the preform core 602, thereby forming the preform structure 700.
Referring to
As exemplarily shown in
Referring to
As exemplarily shown, the bottommost ply in the stack 900 (i.e., ply 900a) forms a portion of the radially-facing inner surface 610 of the preform core 602, and the radially-facing outer surface 614 of the preform core 602 is formed by a plurality of plies including the topmost ply in the stack 900 (i.e., ply 900n). In one embodiment, the plies 900 are bent to have a generally horizontal portion and an inclined portion so that when the plies 900 are stacked, the inclined surface 804 of the preform core 602 is formed substantially by only the bottommost ply 900 in the stack (i.e., by ply 900a). It will be appreciated, however, that the ply 900a and one or more other plies 900 may be structured to form the inclined surface 804. As exemplarily shown, the preform insert 902 forms a portion of the radially-facing inner surface 610 of the preform core 602, and also forms the transition surface 802 of the preform core 602. It should be appreciated, however, that the preform insert 902 may also be structured to form at least a portion of the inclined surface 804. In one embodiment, the preform core 602 shown in
Referring to
As exemplarily illustrated, the first and second reinforcement wraps 1002 and 1004 are positioned closely adjacent to one another, but end portions of the first and second reinforcement wraps 1002 and 1004 are separated from one another such that an edge 1002a of the first reinforcement wrap 1002 is spaced apart from an edge 1004a of the second reinforcement wrap 1004. The first preform insert 1014 may be inserted between the first and second reinforcement wraps 1002 and 1004 at the edges 1002a and 1004a thereof. Similarly, the third and fourth reinforcement wraps 1006 and 1008 are positioned closely adjacent to one another, but end portions of the third and fourth reinforcement wraps 1006 and 1008 are separated from one another such that an edge 1006a of the third reinforcement wrap 1006 is spaced apart from an edge 1008a of the fourth reinforcement wrap 1008. The second preform insert 1016 may be inserted between the third and fourth reinforcement wraps 1006 and 1008 at the edges 1006a and 1008a thereof.
Taken together, the first and second reinforcement wraps 1002 and 1004 form a first preliminary preform structure 1018. Similarly, the third and fourth reinforcement wraps 1006 and 1008 form a second preliminary preform structure 1020. The second reinforcement wrap 1004 of the first preliminary preform structure 1018 is positioned closely adjacent to the fourth reinforcement wrap 1008 of the second preliminary preform structure 1020 at edges 1004a and 1008a thereof, but the second and fourth reinforcement wraps 1004 and 1008 diverge to extend axially in opposite directions. The third preform insert 1012 may be inserted between the first and second preliminary preform structures 1018 and 1020 at the location where the second and fourth reinforcement wraps 1004 and 1008 diverge. Finally, the fifth reinforcement wrap 1010 may be positioned closely adjacent to the second and fourth reinforcement wraps 1004 and 1008 such that the third preform insert 1012 is trapped in the radial and axial directions between the second, fourth and fifth reinforcement wraps 1004, 1008 and 1010.
It should be appreciated that the reinforcement wraps 1002, 1004, 1006, 1008 and 1010, and the preform inserts 1012, 1014 and 1016 may be coupled together in any suitable manner (e.g., by stitching, or the like), and in any sequence suitable for forming the preform structure 1000 exemplarily described above. Constructed as described above, exterior surfaces of the preform structure 1000 include a preform termination surface 1022, a radially-facing inner surface 1020, a radially-facing outer surface 1026, a second axially-facing surface 1028, a transition surface 1030, and an inclined surface 1032. Upon providing the ceramic matrix material to, for example, infiltrate the preform structure 1000, the attachment termination surface 126, radially-facing inner surface 108, radially-facing outer surface 110, second axially-facing surface 114, transition surface 122 and mating surface 124 can be formed to generally correspond to the preform termination surface 1022, a radially-facing inner surface 1020, a radially-facing outer surface 1026, a second axially-facing surface 1028, a transition surface 1030, and an inclined surface 1032, respectively.
Referring collectively to
The hanger 1102 may be formed of a metallic or other material as desired and is structured to be secured to a stationary object such as, for example, an engine case, a stationary mount, or the like. However, it should be understood that the hanger 1102 may also be formed from non-metallic materials such as inter-metallics, composites, and the like. The hanger 1102 includes a coupling portion 1104 defining a number of recesses 1106. Each recess 1106 is configured to receive an attachment portion such as, for example, the attachment portion 104. In one embodiment, each recess 1106 includes a pair of axially-opposed mating surfaces 1108 configured to engage adjacent mating surfaces of the attachment portion 104 so that the attachment portion 104 may be trapped or captured within the recess 1106 along the radial and axial directions. In one embodiment, the coupling portion 1104 can be structured such that the recess 1106 is open adjacent at least one circumferential side so that the attachment portion 104 can be inserted into the recess 1106 in a circumferential direction. As shown in
In one aspect of the present disclosure an apparatus includes a blade track including a segment portion having a first surface and a second surface opposite the first surface, wherein the first surface is arcuate; and an attachment portion extending from the second surface, wherein a coupling region of the attachment portion has a dovetail shaped cross section. The attachment portion and the segment portion of the blade track may be formed from a ceramic matrix composite material with a preform structure comprising at least one reinforcement wrap positioned around shaped ceramic fibers with at least one ply of reinforcement material, and a ceramic matrix material infiltration into the preform.
The attachment portion can include a plurality of attachment portions, wherein each attachment portion includes a coupling region with a dovetail shaped cross section. A second attachment portion extending from the second surface can include an open channel with a substantially C-shaped cross section. A hanger having a coupling portion can be structured to receive the coupling region of a corresponding attachment portion of the blade track. The hanger and the blade track can have different coefficients of thermal expansion in exemplary embodiments of the present disclosure. A plurality of blade track segments can be arranged circumferentially about a common axis to define an exhaust gas flow path for a turbine.
Another aspect of the present disclosure includes a turbine blade track assembly comprising a blade track segment portion having a first surface, a second surface opposite the first surface, and a pair of spaced apart third surfaces extending from the first surface to the second surface, wherein the first surface is an arcuate surface adapted to form a portion of an outer wall of an exhaust gas flow path; a blade track attachment portion extending from the second surface, wherein a coupling region of the attachment has a dovetail shaped cross section; and a blade track hanger configured to connect to fixed structure positioned in a gas turbine engine, the hanger having a coupling portion structured to receive the dovetail shaped coupling region of the blade track attachment portion. The components of the blade track assembly can be made from the same material or alternatively from different materials as desired.
Yet another aspect of the present disclosure includes a gas turbine engine comprising a turbine section having at least one turbine rotor with a plurality of turbine blades; a plurality of blade tracks positioned circumferentially around the turbine blades; at least one dovetail shaped connecting member extending radially outward from each blade track; and a hanger connected to a structural member of the gas turbine engine and configured to releasably couple with the at least one dovetail shaped connecting member of a corresponding blade track. The blade track can be formed from a ceramic matrix composite material and the hanger can be formed from a metallic material in one form of the disclosure.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the inventions are desired to be protected. It should be understood that while the use of words such as preferable, preferably, preferred or more preferred utilized in the description above indicate that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the invention, the scope being defined by the claims that follow. In reading the claims, it is intended that when words such as “a,” “an,” “at least one,” or “at least one portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.
This application claims priority to and the benefit U.S. Provisional Patent Application No. 61/778,286, filed on Mar. 12, 2013, the disclosure of which is now expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4087199 | Hemsworth | May 1978 | A |
4512159 | Memmen | Apr 1985 | A |
4728257 | Handschuh | Mar 1988 | A |
5074752 | Murphy et al. | Dec 1991 | A |
6406256 | Marx | Jun 2002 | B1 |
6648597 | Widrig et al. | Nov 2003 | B1 |
6702550 | Darkins et al. | Mar 2004 | B2 |
6733235 | Alford et al. | May 2004 | B2 |
6758653 | Morrison | Jul 2004 | B2 |
6896483 | Dierksmeier et al. | May 2005 | B2 |
7052235 | Alford | May 2006 | B2 |
7117983 | Good et al. | Oct 2006 | B2 |
7278820 | Keller | Oct 2007 | B2 |
7284958 | Dundas et al. | Oct 2007 | B2 |
7306826 | Subramanian et al. | Dec 2007 | B2 |
7329101 | Carper et al. | Feb 2008 | B2 |
7488157 | Marini et al. | Feb 2009 | B2 |
7510379 | Marusko et al. | Mar 2009 | B2 |
7579094 | Subramanian et al. | Aug 2009 | B2 |
7686577 | Morrison et al. | Mar 2010 | B2 |
7726936 | Keller et al. | Jun 2010 | B2 |
7754126 | Subramanian et al. | Jul 2010 | B2 |
8128350 | Schiavo | Mar 2012 | B2 |
8246299 | Razzell et al. | Aug 2012 | B2 |
8303245 | Foster et al. | Nov 2012 | B2 |
9267388 | Mizokami | Feb 2016 | B2 |
20030185674 | Alford | Oct 2003 | A1 |
20080159850 | Tholen et al. | Jul 2008 | A1 |
20090169368 | Schlichting et al. | Jul 2009 | A1 |
20090257875 | McCaffrey et al. | Oct 2009 | A1 |
20100172760 | Ammann | Jul 2010 | A1 |
20110171018 | Garcia-Crespo | Jul 2011 | A1 |
20110318171 | Albers et al. | Dec 2011 | A1 |
20120082540 | Dziech et al. | Apr 2012 | A1 |
20120156029 | Karafillis et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
1076161 | Feb 2001 | EP |
1944474 | Jul 2008 | EP |
2034132 | Mar 2009 | EP |
1350927 | Oct 2013 | EP |
1487064 | Sep 1977 | GB |
2484188 | Apr 2012 | GB |
3026346 | Mar 1991 | JP |
H110205305 | Aug 1998 | JP |
WO 2012002528 | Jan 2012 | WO |
Entry |
---|
International Search Report for PCT International Application Serial No. PCT/US2013/078462, dated Mar. 20, 2014, (12 pages). |
Number | Date | Country | |
---|---|---|---|
20140271145 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61778286 | Mar 2013 | US |