The present disclosure relates generally to turbine blades for use in gas turbine engines, and more specifically to turbine blades including ceramic matrix composite materials.
Gas turbine engines are used to power aircraft, watercraft, power generators, and the like. Gas turbine engines typically include a compressor, a combustor, and a turbine. The compressor compresses air drawn into the engine and delivers high pressure air to the combustor. In the combustor, fuel is mixed with the high pressure air and is ignited. Products of the combustion reaction in the combustor are directed into the turbine where work is extracted to drive the compressor and, sometimes, an output shaft. Left-over products of the combustion are exhausted out of the turbine and may provide thrust in some applications.
To withstand heat from the combustion products received from the combustor, the turbine may include blades that have ceramic matrix composite material components. Ceramic matrix composite materials are able to withstand very high temperatures, often without active cooling. Manufacture of turbine blades to include ceramic matrix composite materials can present challenges when detailed features of the turbine blades are considered because of material properties and available manufacturing methods that must be taken into account. Accordingly, work on the design of turbine blades including ceramic matrix composites is ongoing.
The present disclosure may comprise one or more of the following features and combinations thereof.
According to an aspect of the present disclosure, a turbine blade adapted for rotation about a central axis of a gas turbine engine is taught. The turbine blade includes a primary body made from ceramic matrix composite materials and a blade tip that protects materials of the primary body. The primary body may be shaped to provide a root adapted to couple the turbine blade to a disk and an airfoil. The blade tip may extend from the airfoil away from the root and may include a bed of abradable material that extends over at least a portion of the airfoil. The bed of abradable material may be designed to protect ceramic matrix composite materials of the airfoil from rub by structures mounted radially-outward of the blade tip when the turbine blade is rotated during use in the gas turbine engine.
In illustrative embodiments, the blade tip may include a forward retainer that extends from the airfoil away from the root along a leading edge of the airfoil. The forward retainer may provide an axially forward boundary for the bed of abradable material.
In illustrative embodiments, the blade tip may further or alternatively include an aft retainer that extends from the airfoil away from the root along a trailing edge of the airfoil. The aft retainer may provide an axially aft boundary for the bed of abradable material. The forward retainer and/or the aft retainer may be made from ceramic matrix composite materials integral with the airfoil of the primary body.
In illustrative embodiments, the bed of abradable material may form a portion of a pressure side of the blade tip and/or a portion of a suction side of the blade tip. In some embodiments, the bed of abradable material may extend over substantially all of a radially outwardly facing surface of the airfoil.
According to another aspect of the present disclosure, a shrouded turbine blade adapted for rotation about a central axis of a gas turbine engine is taught. The turbine blade of this design may include a primary body made from ceramic matrix composite materials and a blade shroud that extends from the the primary body. The primary body may be shaped to provide a root adapted to couple the turbine blade to a disk and an airfoil shaped to interact with hot gasses in a gas turbine engine and to extract work therefrom. The blade shroud may include a shroud head that extends circumferentially from the airfoil and a bed of abradable material that extends over at least a portion of the shroud head. The bed of abradable material may be configured to protect ceramic matrix composite materials of the shroud head from rub by structures mounted radially-outward of the blade shroud when the turbine blade is rotated during use in the gas turbine engine.
In illustrative embodiments, the shroud head may be made from ceramic matrix composite materials integrally formed with the primary body of the turbine blade. The shroud head may include a shroud wall that extends circumferentially around the central axis from the airfoil, axially forward of the airfoil, and axially aft from the airfoil.
In illustrative embodiments, the shroud head may include a forward retainer that extends from the shroud wall away from the airfoil along a forward edge of the blade shroud. The forward retainer may provide an axially forward boundary for the bed of abradable material.
In illustrative embodiments, the shroud head may include an aft retainer that extends from the shroud wall away from the airfoil along an aft edge of the blade shroud. The aft retainer may provide an axially aft boundary for the bed of abradable material.
In illustrative embodiments, the bed of abradable material may form a portion of a first circumferential side of the blade shroud and/or a portion of a second circumferential side of the blade shroud. In some embodiments, the bed of abradable material may extend over substantially all of a radially outwardly facing surface of the shroud wall.
According to yet another aspect of the present disclosure, a turbine stage adapted for use in a gas turbine engine having a central axis is taught. The turbine stage may include a seal element that extends around the central axis, and a turbine blade adapted for rotation about the central axis.
In illustrative embodiments, the turbine blade may include a primary body made from ceramic matrix composite materials and a blade end member that extends from the primary body. The primary body may be shaped to provide an airfoil shaped to interact with hot gasses in a gas turbine engine and to extract work therefrom. The blade end member may include a bed of abradable material engaged with the seal element to protect ceramic matrix composite materials of the turbine blade from rub by the seal element when the turbine blade is rotated during use in the gas turbine engine.
In illustrative embodiments, the blade end member may be a blade tip that extends from the airfoil away from the central axis. The blade end member may be located within a primary gas path of the turbine stage having a radially outer boundary defined by the seal element. The blade tip may include the bed of abradable material located within the primary gas path that extends over at least a portion of the airfoil to protect ceramic matrix composite materials of the airfoil from rub with the seal element.
In illustrative embodiments, the blade tip may include a forward retainer that extends from the airfoil away from the central axis along a leading edge of the airfoil and/or an aft retainer that extends from the airfoil away from the central axis along a trailing edge of the airfoil.
In illustrative embodiments, the blade end member may be a blade shroud that extends from the airfoil away from the central axis. The blade shroud may include a shroud head that extends circumferentially from the airfoil to define an outer diameter of a primary gas path through the turbine stage and a bed of abradable material that extends over at least a portion of the shroud head. The bed of abradable material may be designed to protect ceramic matrix composite materials of the shroud head from rub by seal element.
In illustrative embodiments, the shroud head includes a shroud wall that extends circumferentially around the central axis from the airfoil. The shroud head may also include a forward retainer that extends from the shroud wall away from the airfoil along a leading edge of the blade shroud and/or an aft retainer that extends from the shroud wall away from the airfoil along a trailing edge of the blade shroud. The forward retainer and/or aft retainers of the shroud head may provide axially forward and/or aft boundaries for the bed of abradable material.
In illustrative embodiments, the seal element may include an abrasive coating that directly engages the bed of abradable material. The abrasive coating may include particles comprising at least one of silicon-carbide, carbon-boron, and silicon-nitride. In illustrative embodiments, the seal element may be made from ceramic matrix composite materials and the particles may be suspended in ytterbium di-silicate as part of an environmental barrier coating. In some embodiments, the seal element is made simply from ceramic matrix composite materials having a coating of ytterbium di-silicate.
In illustrative embodiments, the seal element may be made from metallic materials. The seal element may include an abrasive coating that directly engages the bed of abradable material. The abrasive coating may include particles comprising boron nitride. In some embodiments, the seal element may be made from metallic materials and may include a titanium or MChrAlY coating that directly engages the bed of abradable material.
These and other features of the present disclosure will become more apparent from the following description of the illustrative embodiments.
For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to a number of illustrative embodiments illustrated in the drawings and specific language will be used to describe the same.
A turbine blade 10 according to the present disclosure includes a primary body 20 and a blade tip 30 with a bed of abradable material 32 as shown, for example, in
The turbine blade 10 of the present disclosure is adapted for rotation about a central axis of a gas turbine engine so as to drive rotation of other components within the engine. The turbine blade 10 includes the primary body 20 and the blade tip 30 as shown in
The blade tip 30, sometimes called a blade end member, is adapted to engage a seal element 40, 40′ included in a corresponding turbine stage 50, 50′ during rotation of the turbine blade 10 in a gas turbine engine as suggested in
The blade tip 30 is airfoil shaped and is arranged in the primary gas path GP as shown in the drawings. The blade tip 30 includes the bed of abradable material 32, a forward retainer 34, and an aft retainer 36 as shown in
The bed of abradable material 32 may be made from ceramic matrix composite with chopped fibers. Of course, other suitable materials can be used. In general, the bed of abradable material 32 may be characterized in that it is more abradable (or softer) than the ceramic matrix composite materials of the primary body 20 and the forward/aft retainers 34, 36. In the illustrated embodiment, the ceramic matrix composite materials included in the bed of abradable material 32 is more porous than the surrounding materials to provide abradability. In the illustrative embodiment, the bed of abradable material 32 is coupled to the surrounding ceramic matrix composite materials by ceramic matrix material.
In the illustrative embodiment, the bed of abradable material 32 is exposed to the primary gas path GP as suggested in
The forward retainer 34 provides an axially forward boundary for the bed of abradable material 32 as shown in
The aft retainer 36 provides an axially aft boundary for the bed of abradable material 32 as shown in
As noted above, the primary body 20 of the turbine blade 10 along with the forward and aft retainers 34, 36 of the blade tip 30 are integrally formed from ceramic matrix composite materials as shown in
As noted above, a turbine stage 50 according to the present disclosure can include both the turbine blade 10 and a seal element 40 as shown in
Cooling features/holes like those shown in
The knife seals 41, 42 of the seal element 40 are manufactured to be harder than the bed of abradable material 30 so as to cut into the bed of abradable material 30 upon rub in or kissing during operation. In illustrative embodiments, the knife seals 41, 42 include a coating of fully densified environmental barrier coating. Such a coating may be made from ytterbium di-silicate or other suitable materials. This or other coatings applied to the knife seals 41, 42 may be applied via additive layer manufacturing (ALM), direct laser deposition (DLD), electron beam physical vapor deposition (EPBVD), plasma spray physical deposition (PSPD), solution gel, or brazing. Coating applied to the knife seals 41, 42 may include abrasive particulate.
Coating applied to the knife seals 41, 42 may include abrasive particulate/particles. The abrasive particles used in the knife seals 41, 42 may be silicon-carbide (SiC), carbon-boron (C—BN), and silicon-nitride (SiN). In other embodiments, other types of particle may be used. Each particle may have an exemplary diameter of between about, or precisely, 0.002-0.0065 inches, average size (50-165 micrometers) to provide about 80 and 230 grit. In other embodiments, particles may have an exemplary diameter of between about, or precisely, 0.0004-0.0118 inches, average size (10-300 micrometers). However, other sizes of particle are contemplated.
In embodiments in which the seal element 40 is made from metallic materials, the knife seals 41, 42 may have abrasive coatings and/or tips applied. For example, a titanium or MChrAlY coating may be applied via the various methods described above as would be suitable for a particular coating type. In some such embodiments, particles of boron nitride may be included in the coating to provide abrasive elements.
An alternative turbine stage 50′ incorporating the turbine blade 10 of
In embodiments where the seal element 40′ is made from ceramic matrix composite materials, the abrasive layer 48′ may include be provided by a coating of fully densified environmental barrier coating. Such a coating may be made from ytterbium di-silicate or other suitable materials. This or other coatings applied to the seal element 40′ may be applied via additive layer manufacturing (ALM), direct laser deposition (DLD), electron beam physical vapor deposition (EPBVD), plasma spray physical deposition (PSPD), solution gel, or brazing. Coating applied to the seal element 40′ may include abrasive particulate as further described below.
In embodiments in which the seal element 40′ is made from metallic materials, the abrasive layer 40′ may include abrasive coatings. For example, a titanium or MChrAlY coating may be applied via the various methods described above as would be suitable for a particular coating type.
Coating applied to the seal element 40′ may include abrasive particulate/particles. The abrasive particles may be silicon-carbide (SiC), carbon-boron (C—BN), and silicon-nitride (SiN). In other embodiments, other types of particle may be used. Each particle may have an exemplary diameter of between about, or precisely, 0.002-0.0065 inches, average size (50-165 micrometers) to provide about 80 and 230 grit. In other embodiments, particles may have an exemplary diameter of between about, or precisely, 0.0004-0.0118 inches, average size (10-300 micrometers). However, other sizes of particle are contemplated.
Turning back to the primary body 20 of the turbine blade 10, the root 22 of the primary body 20 is adapted to couple the turbine blade 10 to a disk (not shown). Illustratively, the root 22 has a fir-tree shape but in other embodiments may have a dove-tail shaped, apertures for fastener coupling, or may have any other suitable shape with features for coupling directly or indirectly to a disk.
The platform 24 of the primary body 20 included in the turbine blade 10 is arranged radially between the root 22 and the airfoil 26 as shown in
The airfoil 26 is shaped to interact with hot gasses discharged from a combustor in an associated gas turbine engine and to extract work therefrom. The airfoil 26 is illustratively of solid construction enabled by the high temperature capability of the ceramic matrix composite materials. However, in other embodiments, the airfoil 26 may be actively cooled via internal channels supplied with cooling air.
A second turbine blade 210 in accordance with the present disclosure is shown in
The turbine blade 210 of the present disclosure is adapted for rotation about a central axis of a gas turbine engine so as to drive rotation of other components within the engine. The turbine blade 210 includes the primary body 220 and the blade shroud 230 as shown in
The bed of abradable material 232 in the blade shroud 230 is adapted to engage a seal element 240 included in a corresponding turbine stage 250 during rotation of the turbine blade 210 in a gas turbine engine as suggested in
The blade shroud 230, sometimes called a blade end member, extends circumferentially around the central axis from the airfoil 226, axially forward of the airfoil 226, and axially aft from the airfoil 226 so as to define a radially-outer boundary of a primary gas path GP. The blade shroud 230 includes a shroud head 231 and the bed of abradable material 232. The shroud head 231 is integrally formed from ceramic matrix composite materials along with the primary body 220 of the turbine blade. The bed of abradable material 232 is received in a radially-outwardly opening channel 239 defined by the shroud head 231.
The shroud head 231 is shaped to include a forward retainer 234, a shroud wall 235, and an aft retainer 236 as shown in
The bed of abradable material 232 may be made from ceramic matrix composite with chopped fibers. Of course, other suitable materials can be used. In general, the bed of abradable material 232 may be characterized in that it is more abradable (or softer) than the ceramic matrix composite materials of the primary body 220, the shroud wall 235, and the forward/aft retainers 234, 236. In the illustrated embodiment, the ceramic matrix composite materials included in the bed of abradable material 232 is more porous than the surrounding materials to provide abradability. In the illustrative embodiment, the bed of abradable material 232 is coupled to the surrounding ceramic matrix composite materials by ceramic matrix material.
In the illustrative embodiment, the bed of abradable material 232 is shielded from the primary gas path GP. The bed 232 extends circumferentially all the way across the blade shroud 230 and provides portions of both a first circumferential side 233P and a second circumferential side side 233S of the blade shroud 230. In some embodiments, the forward and/or aft retainers 234, 236 may be omitted and the bed of abradable material 232 can extend over additional (or all) of the radially-outer surface 229 of the shroud wall 235 as suggested in phantom line.
The forward retainer 234 provides an axially forward boundary for the bed of abradable material 232 as shown in
The aft retainer 236 provides an axially aft boundary for the bed of abradable material 232 as shown in
As noted above, the primary body 220 of the turbine blade 210 along with the shroud head 231 of the blade shroud 230 are integrally formed from ceramic matrix composite materials as shown in
A turbine stage 250 according to the present disclosure can include both the turbine blade 210 and a seal element 240 as shown in
The knife seals 241, 242 of the seal element 240 are manufactured to be harder than the bed of abradable material 230 so as to cut into the bed of abradable material 230 upon rub in or kissing during operation. In illustrative embodiments, the knife seals 241, 242 include a coating of fully densified environmental barrier coating. Such a coating may be made from ytterbium di-silicate or other suitable materials. This or other coatings applied to the knife seals 241, 242 may be applied via additive layer manufacturing (ALM), direct laser deposition (DLD), electron beam physical vapor deposition (EPBVD), plasma spray physical deposition (PSPD), solution gel, or brazing. Coating applied to the knife seals 241, 242 may include abrasive particulate.
Coating applied to the knife seals 241, 242 may include abrasive particulate/particles. The abrasive particles used in the knife seals 241, 242 may be silicon-carbide (SiC), carbon-boron (C—BN), and silicon-nitride (SiN). In other embodiments, other types of particle may be used. Each particle may have an exemplary diameter of between about, or precisely, 0.002-0.0065 inches, average size (50-165 micrometers) to provide about 80 and 230 grit. In other embodiments, particles may have an exemplary diameter of between about, or precisely, 0.0004-0.0118 inches, average size (10-300 micrometers). However, other sizes of particle are contemplated.
In embodiments in which the seal element 240 is made from metallic materials, the knife seals 241, 242 may have abrasive coatings and/or tips applied. For example, a titanium or MChrAlY coating may be applied via the various methods described above as would be suitable for a particular coating type. In some such embodiments, particles of boron nitride may be included in the coating to provide abrasive elements.
In the illustrated embodiment, the bed of abradable material 232 has a frustoconical shape as suggested in
The primary gas path GP of the turbine stage 250 has a radially-outer boundary defined by the radially-inner face of blade shroud 230 included in the turbine blade 210. Accordingly, the bed of abradable material 232 is shielded from direct interaction with the materials in the gas path GP. In addition, the primary gas path GP of the turbine stage 250 has a radially-inner boundary defined by the platform 224 of the turbine blade 210.
Turning back to the primary body 220 of the turbine blade 210, the root 222 of the primary body 220 is adapted to couple the turbine blade 210 to a disk (not shown). Illustratively, the root 222 has a fir-tree shape but in other embodiments may have a dove-tail shaped, apertures for fastener coupling, or may have any other suitable shape with features for coupling directly or indirectly to a disk.
The platform 224 of the primary body 220 included in the turbine blade 210 is arranged radially between the root 222 and the airfoil 226 as shown in
The airfoil 226 is shaped to interact with hot gasses discharged from a combustor in an associated gas turbine engine and to extract work therefrom. The airfoil 226 is illustratively of solid construction enabled by the high temperature capability of the ceramic matrix composite materials. However, in other embodiments, the airfoil 226 may be actively cooled via internal channels supplied with cooling air.
It is noted that radial directions described throughout this description relate to a central axis of an associated gas turbine engine. While the central axis is not shown, it is understood to extend left to right under the root of the airfoils shown in
It is appreciated that turbine blades present an area where benefit exists for implementing ceramic matrix composite materials (CMCs) in gas turbine engines. In addition to the CMCs being capable of operating at higher temperatures that can deliver cooling air savings/specific fuel consumption reductions to the engine system, the weight reductions provided over a metallic blade system can be significant. Not only are ceramic matrix composite-containing blades lighter, but these savings are multiplied since the size and weight of the disks could also be reduced.
In order for a ceramic matrix composite blade to meet all of its functional requirements, it must be capable of running at managed tip clearance to the related stator structure (seal segments). The turbine will likely be more efficient with a tighter tip clearance. The systems with the lowest tip clearances typically involve a rub system where the rotor/blades rub into the outer static structure. The present application describes the incorporation of the abradable portion of a rub system to exist on the rotating blades.
A first envisioned embodiment is shown in
Another embodiment is shown in
Various cutting features (seal elements) can be used as part of the static structure as shown in
While the disclosure has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
Number | Name | Date | Kind |
---|---|---|---|
4390320 | Eiswerth | Jun 1983 | A |
5932356 | Sileo et al. | Aug 1999 | A |
6234747 | Mielke et al. | May 2001 | B1 |
6533285 | Nava et al. | Mar 2003 | B2 |
6541134 | Strangman et al. | Apr 2003 | B1 |
6832890 | Booth | Dec 2004 | B2 |
6887036 | Ohara et al. | May 2005 | B2 |
6887528 | Lau et al. | May 2005 | B2 |
7114912 | Gerez et al. | Oct 2006 | B2 |
7510777 | Darolia et al. | Mar 2009 | B2 |
7837446 | McMillian | Nov 2010 | B2 |
8172519 | Jarrabet et al. | May 2012 | B2 |
8740572 | Hoebel | Jun 2014 | B2 |
8978250 | Barcock et al. | Mar 2015 | B2 |
9133712 | Fisk et al. | Sep 2015 | B2 |
9145250 | Richardson et al. | Sep 2015 | B2 |
9581041 | Sinatra et al. | Feb 2017 | B2 |
9598973 | Ghasripoor et al. | Mar 2017 | B2 |
9879559 | Fisk et al. | Jan 2018 | B2 |
20010004436 | Chasripoor et al. | Jun 2001 | A1 |
20010052375 | Sievers et al. | Dec 2001 | A1 |
20040047726 | Morrison | Mar 2004 | A1 |
20040213919 | Fried | Oct 2004 | A1 |
20050063827 | Ochiai | Mar 2005 | A1 |
20050129511 | Allen | Jun 2005 | A1 |
20060019087 | Mazzola et al. | Jan 2006 | A1 |
20060171813 | Malak et al. | Aug 2006 | A1 |
20060285972 | Nicoll et al. | Dec 2006 | A1 |
20070237667 | Merrill et al. | Oct 2007 | A1 |
20090022583 | Schrey | Jan 2009 | A1 |
20090202355 | Dierksmeier et al. | Aug 2009 | A1 |
20110171039 | Heinz-Schwarzmaier | Jul 2011 | A1 |
20110182720 | Kojima et al. | Jul 2011 | A1 |
20120195766 | Cohin et al. | Aug 2012 | A1 |
20130045091 | Della-Fera et al. | Feb 2013 | A1 |
20140147242 | Ghasripoor | May 2014 | A1 |
20150078900 | Allen | Mar 2015 | A1 |
20150192029 | Roberts, III | Jul 2015 | A1 |
20150267544 | Santanach et al. | Sep 2015 | A1 |
20150308276 | Kleinow | Oct 2015 | A1 |
20150354373 | Guo et al. | Dec 2015 | A1 |
20160003083 | Delisle et al. | Jan 2016 | A1 |
20160177745 | Uskert et al. | Jun 2016 | A1 |
20160214907 | Shim et al. | Jul 2016 | A1 |
20160236995 | Lai et al. | Aug 2016 | A1 |
20160237831 | Strock | Aug 2016 | A1 |
20160333698 | Weaver et al. | Nov 2016 | A1 |
20170016454 | Strock | Jan 2017 | A1 |
20170254206 | Schetzel et al. | Sep 2017 | A1 |
20170254207 | Schetzel et al. | Sep 2017 | A1 |
20170362952 | Stoyanov et al. | Dec 2017 | A1 |
20180087387 | Shi | Mar 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20190323364 A1 | Oct 2019 | US |