None.
None.
1. Field of the Invention
The present invention relates generally to a gas turbine engine, and more specifically to a large span air cooled turbine rotor blade for an industrial gas turbine engine.
2. Description of the Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98
In a gas turbine engine, such as a large frame heavy-duty industrial gas turbine (IGT) engine, a hot gas stream generated in a combustor is passed through a turbine to produce mechanical work. The turbine includes one or more rows or stages of stator vanes and rotor blades that react with the hot gas stream in a progressively decreasing temperature. The efficiency of the turbine—and therefore the engine—can be increased by passing a higher temperature gas stream into the turbine. However, the turbine inlet temperature is limited to the material properties of the turbine, especially the first stage vanes and blades, and an amount of cooling capability for these first stage airfoils.
The first stage rotor blade and stator vanes are exposed to the highest gas stream temperatures, with the temperature gradually decreasing as the gas stream passes through the turbine stages. The first and second stage airfoils (blades and vanes) must be cooled by passing cooling air through internal cooling passages and discharging the cooling air through film cooling holes to provide a blanket layer of cooling air to protect the hot metal surface from the hot gas stream.
Latter stages of turbine blades do not require film cooling air, but do require internal convection cooling in order to control the metal temperature to within acceptable levels in order to provide for a long service life.
In the radial cooling channels with trip strips of
A large span industrial engine turbine rotor blade with a radial extending cooling air passage having a series of turbulence air mixers along the walls of the passage. Each turbulence mixer is formed with an inlet end and a curved and tapered surface such that cooling air is drawn into the inlet end and discharged from the curved and tapered surface towards a middle of the passage.
In a radial passage having four walls, a series of four turbulence mixers are arranged such that the mixer above will be drawn in the cooling air discharged from the mixer below and discharge the cooling air into the middle of the passage, where the mixer above will then draw in the cooling air from the middle of the passage and discharge the cooling air into the middle of the passage so that the next above mixer will be drawn in the cooling air. The turbulence mixers drawn in the cooling air to flow along the hot wall surfaces of the passage and then discharge the hotter cooling air into the middle of the passage to mix with the cooler cooling air such that the overall convection cooling effectiveness is increased.
The present invention is a turbine rotor blade with a long span height such as a later stage turbine blade in an industrial gas turbine engine. These long span blades have radial cooling passages from the root to the blade tip with a large cross section flow area because of the size of the airfoil. The cooling air would require a high velocity in order to produce a high rate of cooling for these larger blades. However, the use of a large amount of cooling air required to produce a high velocity would be very inefficient because the cooling air is supplied from a compressor of the engine. In order to allow for a low flow cooling rate, the present invention uses a series of discrete but continuous turbulence air mixers within the radial cooling channel to mix the cooling air flow and force the cooling air along the walls with the aid of the centrifugal forces developed due to the rotation of the blade.
The turbulence air mixers 21 are arranged as shown in
In operation, the cooling air flows through the radial cooling channel from the lower span toward the blade tip. The cooling air is captured at the leading edge of the first turbulence air mixer 21d which forces the cooling air to flow toward the middle of the radial passage 22. The cooling air is then captured by the next turbulence mixer 21c directly above the first turbulence mixer 21d. The second turbulence mixer 21c will draw the cooling air in from the inlet end and force the cooling air out into the middle of the radial passage 22. This is repeated in the series of turbulence mixers until the cooling air is discharged through the blade tip. This process of drawing in the cooling air into the turbulence mixer 21 and then forcing the cooling air into the middle of the radial passage 22 creates a vortex flow within the passage 22 that mixes the cooling air along the spanwise length of the cooling air passage 22. The mixed and swirling cooling air flows outward through the radial cooling passage 22 and creates a higher pressure and a higher velocity at the outer periphery with a continuous mixture of the cooler air flowing in the middle of the radial passage 22. Thus, the hotter cooling air forced out from the wall surfaces will be mixed with the cooler cooling air flowing through the middle of the radial passage. The higher velocity cooling air at the outer periphery of the cooling air radial passage generates a higher rate of internal heat transfer coefficient and thus provides for a higher cooling effectiveness for the radial cooling air passage with a more uniform mixture of the cooling air.
Because the turbulence mixers 21 of the present invention are formed with a curved and tapered geometry around the radial cooling passage, the continuous and discrete turbulence air mixers cannot be formed by the prior art investment casting process which uses a ceramic core to form the passages and turbulators. However, the turbulence air mixers 21 of the present invention can be easily formed using a metal printing process that can form the blade and the turbulence mixers as a single piece from one or more materials. Such a metal printing process was developed by Mikro Systems, Inc. from Charlottesville, Va. In the metal printing process, the blade and its cooling air features and details are all formed by gradually printing the blade in layers from bottom to top using a laser sintering process or something like it. The blade with the turbulence air mixers of the present invention can create a high velocity with the mixed cool air at the inner wall of the passage, and thus generate a high rate of internal convection heat transfer coefficient and an improvement in overall cooling performance. This results in a reduction in the cooling flow demand an therefore an increase in the gas turbine engine efficiency.
Number | Name | Date | Kind |
---|---|---|---|
5472316 | Taslim et al. | Dec 1995 | A |
5695320 | Kercher | Dec 1997 | A |
6331098 | Lee | Dec 2001 | B1 |
6582584 | Lee et al. | Jun 2003 | B2 |
8096766 | Downs | Jan 2012 | B1 |