None.
None.
1. Field of the Invention
The present invention relates generally to a gas turbine engine, and more specifically to a turbine blade with a spar and shell construction.
2. Description of the Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98
In a gas turbine engine, a compressed air from a compressor is burned with a fuel in a combustor to produce a hot gas flow. The hot gas flow is passed through a multiple stage turbine to convert most of the energy from the gal flow into mechanical work to drive the compressor, and in the case of an aero engine to drive a fan, and in the case of an industrial gas turbine (IGT) engine to drive an electric generator to produce electrical power.
The efficiency of the engine can be increased by passing a higher temperature gas into the turbine, or a higher turbine inlet temperature. However, the maximum turbine inlet temperature will depend upon the material properties of the first stage turbine stator vanes and rotor blades, since these airfoils are exposed to the highest gas flow temperature. Modern engine has a turbine inlet'temperature around 2,400 degrees F., which is much higher than the melting point of a typical, modern vane or blade. These airfoils can be used under these high temperature conditions due to airfoil cooling using a mixture of convection cooling along with impingement cooling and film cooling of the internal and the external surfaces of these airfoils.
A few very high temperature materials exist that have melting points well above modern engine turbine inlet temperatures. Columbium (or Niobium) has a melt temperature of up to 4,440 F; TZM Molybdenum up to 4,750 F; hot pressed silicon nitride up to 3,500 F; Tantalum up to 5,400 F; and Tungsten up to 6,150 F. these materials would allow for higher turbine inlet temperatures. However, these materials cannot be cast or machined to form turbine airfoils.
On prior art method of forming a turbine airfoil from one of these exotic high temperature materials is disclosed in U.S. Pat. No. 7,080,971 B2 issued to Wilson et al on Jul. 25, 2006 and entitled COOLED TURBINE SPAR SHELL BLADE CONSTRUCTION, the entire disclosure being incorporated herein by reference. The shell is formed from a wire EDM process to form a thin walled airfoil shell, and the shell is held in compression between a spar tip and the blade platform or root section. The shell can take the higher gas flow temperatures, and the spar provides internal cooling for the airfoil walls.
Part life is another important factor in the engine, especially for an industrial gas turbine (IGT) engine. In a spar and shell turbine blade, the spar is held in place between the blade platform or root section and the spar tip. The shell in the Wilson et al (U.S. Pat. No. 7,080,971) would be placed under a compressive load due to the centrifugal force acting to push the shell in the blade radial outward direction and up against the underside of the spar tip edge. Operating the shell of the turbine blade with, a spar and shell construction is better than operating the shell under a tensile loading because the tensile loads will have a shorter life than one under a compressive loading. Operating the shell under near zero loading would allow for an infinite life for this part since the part would be operating under practically no loading. Except for the thermal loading and pressure loading from the hot gas flow reacting onto the shell surface, the turbine blade could be used for an indefinite period of time.
It is an object of the present invention to provide for a turbine airfoil with a very long life prediction for the shell.
It is another object of the present invention to provide for a shell formed from a wire EDM process.
It is another object of the present invention to provide for a spar and shell turbine blade in which the shell is supported in compression to increase the life and allow for CMC, micro porous TBC coating, and silicon nitride.
It is another object of the present invention to provide for a spar and shell turbine blade with a thermally free platform to relieve thermal fight.
It is another object of the present invention to provide for a spar and shell turbine blade which eliminates bonds, welds and brazes.
It is another object of the present invention to provide for a spar and shell turbine blade with a much lighter weight.
It is another object of the present invention to provide for a spar and shell turbine blade, in which the spar is unloaded by the shell or the tip cap.
The present invention is a turbine blade with a spar and shell construction. The spar extends from the blade platform section and includes a hollow interior. The shell is held in place between the platform and a blade tip cap. A tension rod extends from the blade root through the hollow spar and engages with the tip cap such that the spar is unloaded from the shell or the tip cap. The tip cap and the platform include grooves in which the shell ends fit. A ceramic seal fits within the grooves between the shell tip and the bottom of the groove within the tip cap and the platform and creates a seal for the shell. A pretension nut is threaded to the root end of the tension rod to provide a predetermined tension to the tension rod to load the shell within the blade assembly.
With the blade assembly of the present invention, the shell can be made from a high temperature resistant material such as Molybdenum. Also, the loads formed on the shell and the tip cap from rotation of the blade assembly will not be passed onto the spar but through the tension rod.
The present invention is a turbine blade with a spar and shell construction that reduces or eliminates the problems discussed above in the background. The blade 10 is shown in
A shell 22 is secured between a tip cap 23 and the platform 12 as seen in
A tip cap 23 is secured to the tip of the blade assembly and secures the shell to the platform 12. The tip cap is formed from a high temperature resistant material like that, of the spar and root 11, or it can be made from a single crystal material. The tip cap 23 includes a groove 24 that extends around the tip cap and has the form of the airfoil shaped shell. The tip cap 23 includes a threaded projecting member that extends toward the platform. A ceramic seal 31 is pinched between the shell 22 end and the bottom of the groove 24 in the tip cap 23 as seen in the detailed view of
A tension rod 34 is used to secure the tip cap 23 and the shell 22 to root 11. The tension rod 34 includes a tip end with a threaded female opening that engages similar threads formed on the tip cap projecting member 25. The tension rod 34 may also be integral with, and of the same material as, the tip cap 23. The tension rod 34 includes a platform or root end with a male threaded outer surface. With the tip cap 23 and shell 22 positioned in place to form the blade assembly, the tension rod 34 is placed through an opening on the bottom of the root 11 and into the hollow section of the spar and threaded onto the male threads on the tip cap projecting member 25. The seals are placed within the proper grooves before the tip cap and shell are, positioned in place. A pretension nut 35 having a cavity with threads on one end and a bolt head on the opposite end is threaded onto the male threads of the tension rod to produce a tension on the tension rod 34 and therefore a compressive load on the shell 22 through the tip cap 23. The tension rod 34 can be made from Inconel 718 or other similar high strength materials.
Ceramic rope seals are placed in grooves formed on the platform 12 and the underside of the tip cap 23 to form a seal between the ends of the shell 22 and the platform and tip cap. Ceramic seals are used because this material is resistant to the very high temperatures of the gas flow.
The dissimilar metal joint formed between the tip cap projecting member 25 and the tension rod 34 can be machine threads, a forged bond, a ball and socket, or other well known engagement means.
The platforms 12 can include a C-shaped heat shield 36 to provide additional thermal protection to the platforms of the blade. The heat shields 36 are formed Molybdenum or other high temperature resistant materials in which the shell is formed from. The heat shields 36 would extend to the shell wall surface to prevent the hot gas flow from contacting the platform 12.
Because the shell 22 is held under compression during engine operation, an infinite life for the shell is predicted. Thus, the turbine blade 10 with the spar and shell construction of the present invention can be used in an engine, such as an industrial gas turbine engine, for long periods without repair or replacement. Also, because the shell is held in compression (instead of tension in the solid blades of the prior art), the blade with a TBC applied will not spill (TBC chips off from the surface) as much and therefore will have a longer service life as well. The blade also eliminates the need for bonds, welds and brazes so that only a mechanical attachment is needed.
Another benefit from the turbine blade with the spar and shell construction of the present invention is the weight savings over the prior art blade. A large IGT engine used for power production includes 72 blades in the first stage of the turbine, and each blade weighs 14.7 pounds including the TBC. The blade of the present invention weighs about 11 pounds which is almost 4 pounds less than the prior art. A lighter blade will produce lower stresses on the rotor disk due to the centrifugal forces developed. Lower stress on the rotor disk will allow for smaller and less weight rotor disks, or improved disk LCF life at the life limiting location.
Another feature of the spar and shell turbine blade of the present invention is the reduction in the casting technology used to form the blade. A lower level of casting technology allows for alternative casting vendors to be used to manufacture the blade. The present invention provides approximately 30% reduction is size of casting footprint. Casting costs are a function of parts per mold, and casting yield. Removing the platform would allow more parts per mold for airfoil spar and increased yield. Separate platform would permit (if cast) cored platforms and other high technology features to be used.
Number | Name | Date | Kind |
---|---|---|---|
4314794 | Holden et al. | Feb 1982 | A |
4480956 | Kruger et al. | Nov 1984 | A |
4790721 | Morris et al. | Dec 1988 | A |
7080971 | Wilson et al. | Jul 2006 | B2 |
7452189 | Shi et al. | Nov 2008 | B2 |
7670116 | Wilson et al. | Mar 2010 | B1 |
7736131 | Wilson, Jr. | Jun 2010 | B1 |
7758314 | Wilson et al. | Jul 2010 | B2 |
7993104 | Ewing, Jr. | Aug 2011 | B1 |