(1) Field of the Invention
This invention relates to turbomachinery, and more particularly to cooled turbine blades.
(2) Description of the Related Art
Heat management is an important consideration in the engineering and manufacture of turbine blades. Blades are commonly formed with a cooling passageway network. A typical network receives cooling air through the blade platform. The cooling air is passed through convoluted paths through the airfoil, with at least a portion exiting the blade through apertures in the airfoil. These apertures may include holes (e.g., “film holes” distributed along the pressure and suction side surfaces of the airfoil and holes at junctions of those surfaces at leading and trailing edges. Additional apertures may be located at the blade tip. In common manufacturing techniques, a principal portion of the blade is formed by,a casting and machining process. During the casting process a sacrificial core is utilized to form at least main portions of the cooling passageway network. Proper support of the core at the blade tip is associated with portions of the core protruding through tip portions of the casting and leaving associated holes when the core is removed. Accordingly, it is known to form the casting with a tip pocket into which a plate may be inserted to at least partially obstruct the holes left by the core. This permits a tailoring of the volume and distribution of flow through the tip to achieve desired performance. Examples of such constructions are seen in U.S. Pat. Nos. 3,533,712, 3,885,886, 3,982,851, 4,010,531, 4,073,599 and 5,564,902. In a number of such blades, the plate is subflush within the casting tip pocket to leave a blade tip pocket or plenum.
One aspect of the invention involves providing the plenum with means for preferentially directing or diverting cooling air from a leading edge branch of the network along the pressure side of the rim forming the plenum. This may be achieved by a tip plate only partially blocking a leading port in the casting. The plate may have a leading edge positioned to direct flow through the port preferentially along the compression (pressure) side. The plate leading edge may be angled forwardly to a local meanline of the airfoil section. The plate may block more area of the port on the suction side of the mean line than on the pressure side. A length along a pressure side of the blade tip pocket ahead of the plate may be longer than a length along the suction side.
In another aspect of the invention, the blade is provided with means for preferentially directing flow from a trailing passageway to the pressure side. This may be achieved by having a plate trailing portion extending along a suction side of a trailing port but not along an adjacent pressure side. The trailing portion along the suction side may protrude relative to a portion thereahead. The trailing portion along the pressure side may be recessed relative to the portion thereahead.
In another aspect, a wall of the tip plenum may have a side trailing edge gap on one side (e.g., the pressure side) with means for reducing stress concentration at the gap. This may be achieved by having a radius of curvature at a leading inboard corner of the gap effective to relieve thermal and mechanical stresses.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
The airfoil extends from a leading edge 60 to a trailing edge 62. The leading and trailing edges separate pressure and suction sides or surfaces 64 and 66. For cooling the blade, the blade is provided with a cooling passageway network coupled to ports (not shown) in the platform. The exemplary passageway network includes a series of cavities extending generally lengthwise along the airfoil. A foremost cavity is identified as a leading edge cavity extending generally parallel to the leading edge. An aftmost cavity is identified as a trailing edge cavity extending generally parallel to the trailing edge. These cavities may be joined at one or both ends and/or locations along their lengths. The network may further include holes extending to the pressure and suction surfaces 64 and 66 for further cooling and insulating the surfaces from high external temperatures. Among these holes may be an array of trailing edge holes 80 extending between the trailing edge cavity and a location proximate the trailing edge.
In an exemplary embodiment, the principal portion of the blade is formed by casting and machining. The casting occurs using a sacrificial core to form the passageway network. An exemplary casting process forms the resulting casting with the aforementioned casting tip compartment 100 (FIG. 2). The compartment has a web 102 having an outboard surface 103 forming a base of the casting tip compartment. The outboard surface 103 is below a rim 104 of a wall structure having portions 105 and 106 on pressure and suction sides of the resulting airfoil. The web 102 is formed with a series of apertures 110, 112, 114, 116, 118, and 120 from leading to trailing edge. These apertures may be formed by portions of the sacrificial core mounted to an outboard mold for support. The apertures are in communication with the passageway network. The apertures may represent an undesired pathway for loss of cooling air from the blade. Accordingly it is advantageous to fully or partially block some or all of the apertures with the cover plate 50 (FIG. 3). The cover plate has inboard and outboard surfaces 130 and 132 (FIG. 4). The inboard surface 130 lies flat against the web surface 103 and the outboard surface 132 lies recessed (subflush) below the rim 104 to leave a blade tip pocket or compartment. In operation, the rim (subject to recessing described below) is substantially in close proximity to the interior of the adjacent shroud (e.g., with a gap of about 0.1 inch).
The cover plate 50 is initially formed including a perimeter having a first portion 140 generally associated with the contour of the airfoil pressure side and a second portion 142 generally associated with the airfoil suction side. Exemplary cover plate material is nickel-based superalloy (e.g., UNS N06625 0.03 inch thick). The portions 140 and 142 are (subject to departures describe below) dimensioned to closely fit within the tip compartment adjacent the interior surface of the wall structure portions 105 and 106. In the exemplary embodiment, the perimeter portions 140 and 142 do not extend all the way to the leading edge. They terminate at a linking portion 144 which in the exemplary embodiment is recessed from the leading edge along both pressure and suction sides. Toward the trailing edge, the portions are joined by a trailing perimeter portion 146. As is described in further detail below, a trailing part 148 of the perimeter portion 140 is slightly recessed from a remainder thereof and a trailing part 150 of the perimeter portion 142 is slightly protruding relative to a remainder. The cover plate further includes apertures 160, 162, and 164.
The cover plate 50 is initially formed including a perimeter having a first portion 140 generally associated with the contour of the airfoil pressure side and a second portion 142 generally associated with the airfoil suction side. Exemplary cover plate material is nickel-based superalloy (e.g., UNS N06625 0.03 inch thick). The portions 140 and 142 are (subject to departures describe below) dimensioned to closely fit within the tip compartment adjacent the interior surface of the wall structure portions 105 and 106. In the exemplary embodiment, the perimeter portions 140 and 142 do not extend all the way to the leading edge. They terminate at a cover plate perimeter linking portion 144 which in the exemplary embodiment is recessed from the leading edge along both pressure and suction sides. Toward the trailing edge, the portions are joined by a trailing perimeter portion 146. As is described in further detail below, a trailing part 148 of the perimeter portion 140 is slightly recessed from a remainder thereof and a trailing part 150 of the perimeter portion 142 is slightly protruding relative to a remainder. The cover plate further includes apertures 160, 162, and 164.
In the exemplary embodiment, when so installed, a leading portion 180 (
The shape of the leading portion 180 may vary. In the exemplary embodiment, the cover plate perimeter linking portion 144 is nearly straight and makes an angle θ of lees than 90° with the chordline on the pressure side in the leading direction. Due to this incline, the suction side perimeter portion 142 extends closer to the leading edge than does the pressure side portion 140. The result of this arrangement is that the leading portion 180 preferentially directs airflow toward the pressure side for enhanced cooling on the pressure side. This produces a more efficient use of airflow as the pressure side may require greater cooling.
In the exemplary embodiment, the second web aperture 112 and first cover plate aperture 160 are substantially coextensive whereas the cover plate may substantially or more significantly obstruct the remaining web apertures. In the exemplary embodiment, the cover plate apertures 162 and 164 are aligned with the web apertures 114 and 116 but are substantially smaller and therefore substantially reduce airflow through such apertures. In the exemplary embodiment, the cover plate substantially seals the web aperture 118 and, as described in further detail below, extends partially over the trailing web aperture 120. Relatively low restriction of flow through the aperture 112 provide for efficient use of cooling air as such air can be expected to pass along the greater portion of the tip compartment than would air introduced more toward the trailing edge.
One or more embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, many details will be application-specific. To the extent that the principles are applied to existing applications or, more particularly, as modifications of existing blades, the features of those applications or existing blades may influence the implementation. Accordingly, other embodiments are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3533712 | Kercher | Oct 1970 | A |
3885886 | Richter | May 1975 | A |
4257737 | Andress et al. | Mar 1981 | A |
6652235 | Keith et al. | Nov 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20040146401 A1 | Jul 2004 | US |