The present invention relates generally to turbine buckets and, more particularly, to a turbine bucket incorporating an optimized cooling circuit with modified cooling hole sizes and positions in an effort to maximize cooling ability and ensure a longer useful life.
In gas turbine engines and the like, a turbine operated by burning gases drives a compressor which furnishes air to a combustor. Such turbine engines operate at relatively high temperatures. The capacity of such an engine is limited to a large extent by the ability of the material from which the turbine blades (sometimes referred to herein as “buckets”) are made to withstand thermal stresses which develop at such relatively high operating temperatures. The problem may be particularly severe in an industrial gas turbine engine because of the relatively large size of the turbine blades.
To enable higher operating temperatures and increased engine efficiency without risking blade failure, hollow, convectively-cooled turbine blades are frequently utilized. Such blades generally have interior passageways which provide flow passages to ensure efficient cooling, whereby all the portions of the blades may be maintained at relatively uniform temperatures.
While smooth-bore passages have been utilized, turbulence promoters, e.g., turbulators, are also used in many gas turbine buckets to enhance the internal heat transfer coefficient. The heat transfer enhancement can be as high as 2.5 times that of smooth-bore passages for the same cooling flow rate. Turbulators conventionally comprise internal ridges or roughened surfaces along the interior surfaces of the cooling passages and are typically cast inside the cooling passages using ceramic cores and/or STEM (shaped tube electrochemical machining) drilling.
In earlier attempts to improve the original four-hole stage 2 bucket, additional cooling was introduced by adding cooling holes and incorporating turbulators to increase the heat transfer coefficients at certain locations. The resulting seven-hole bucket was to be in uprated machines firing at 2075° F. Due to unbalanced stack issues, the seven-hole bucket design was severely local creep limited in its trailing edge.
A redesigned baseline six-hole bucket was better balanced and also incorporated turbulation; however, in an attempt to recover some performance, the cooling flow through the component was drastically reduced, leading to bulk creep life limitations.
In an exemplary embodiment of the invention, a turbine bucket includes a cooling circuit through a dovetail section, a shank section, and an airfoil section. The cooling circuit is configured to maximize cooling ability and maximize a useful a life at base load operation at firing temperatures of up to 2084° F. while minimizing negative effects on performance.
In another exemplary embodiment of the invention, a turbine bucket includes a cooling circuit through a dovetail section, a shank section, and an airfoil section. The cooling circuit includes a plurality of cooling holes having predetermined positions and sizes, respectively, each extending through the dovetail section, the shank section and the airfoil section. The cooling holes extend through the dovetail section, the shank section and the airfoil section. A first through fifth of the cooling holes through the shank section have a diameter of about 0.140″+/−0.100″, and a sixth cooling hole through the shank section comprises a diameter of about 0.100″+/−0.05″.
With reference to
The second stage includes the rotor wheel 16 on which buckets 22 are mounted in axial opposition to the upstream stator vanes 28. It will be appreciated that a plurality of the buckets 22 are spaced circumferentially one from the other about the second stage wheel 16, and in this instance, there are 92 buckets mounted on the second stage wheel 16.
With reference to
In an effort to overcome bulk creep life limitations, it is desirable to increase the life of the stage 2 bucket to 96,000 factored hours in base load operation with minimal impact on overall engine performance. Cooling hole/passage locations have been adjusted in both the shank section 34 and the airfoil section 36 in order to allow hole diameter adjustments without violating minimum wall thickness requirements. Turbulation, which helps improve heat transfer capabilities, is also incorporated into the cooling holes in the airfoil section 36.
In past designs, turbulation started and ended at a similar span in all cooling holes in which it was applied. By use of current optimization tools and technology, it has been discovered that varying the start, end and span of turbulation can yield a better balanced life margin at all spans of the airfoil section 36.
As shown, the cooling circuit includes six cooling holes/passages 42, including first, second, third, fourth, fifth and sixth cooling holes, each extending through the dovetail section 32, the shank section 34 and the airfoil section 36. With reference to
To ensure that minimum wall thickness requirements are not violated in the shank section 34 and the dovetail section 32, the cooling holes 42 in the shank section 34 are preferably centered on the minimum neck width of the dovetail section 32 as opposed to the bottom face of the shank. See 46 in
With continued reference to
Table 1 provides exemplary cooling hole locations and hole diameters in a preferred arrangement of the turbine bucket 22. As demonstrated, in the airfoil section 36, from airfoil section cooling hole exit location 38 to the shank-airfoil intersection 44, the cooling hole diameter of holes 1 and 2 is 0.080″, of holes 3 and 4 is 0.095″, of hole 5 is 0.085″, and of hole 6 is 0.040″ with a dimensional tolerance of about +/−0.005″.
With reference to
Using an optimizer algorithm, such as Minitab available from Minitab, Inc. or Excel Solver from Microsoft, with continued reference to Table 1, the turbulation scheme outlined in Table 1 was determined to best provide more uniform bulk creep margin along the entire airfoil for both diffusion and dry low NOx combustor applications, wherein holes 1-3 contain 20-85% airfoil span; holes 4 and 5 contain 40-85% airfoil span; and hole 6 is without turbulation. The turbulation spans noted encompass a tolerance of about +\−10%. The dimensions for determining start and end positions of turbulation components are measured from a plane 48 at a midpoint of the dovetail section 32.
Flow matching of flow models to prototype test stand data verified part life capability to design intent.
With this bucket having been redesigned to meet extended life capability in machines rated at firing temperatures of up to 2084° F., it can be applied to extend hot gas path inspection intervals and part lives for lower firing temperature machines, thereby reducing component replacement and outage costs.
The bucket cooling scheme described herein was optimized in order to maximize cooling ability to ensure a life of greater than 96,000 factored hours at base load operation at firing temperatures of up to 2084° F. while minimizing negative effects on performance by ensuring that only the optimal amount of air was used for cooling. By increasing cooling flow to regions where coolant was needed most, namely close to the trailing edge, and strategically turbulating the cooling holes, bulk and local creep margins were increased throughout the airfoil.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.