1. Field of the Invention
The present invention relates to a steam turbine equipped with a turbine bucket applied to a low-pressure turbine final stage and more particularly to a steam turbine used in a thermal electric power plant or the like.
2. Description of the Related Art
In recent years, steam turbines are required to deal with high-power and cost reduction. To meet such requirements, the method is often adopted to increase an area of a turbine bucket through which steam passes (hereinafter called the exhaust area) by increasing the length of the bucket of a low-pressure turbine final stage.
By increasing the exhaust area to increase the amount of steam flowing along the turbine bucket, the power of the steam turbine can be increased and power produced per casing of a low-pressure turbine can be increased. Thus, the number of low-pressure casings of the steam turbine in an output spectrum, which is conventionally two, can be reduced to one, thereby achieving a remarkable cost reduction.
One of the major problems involved in the increased length of a bucket of a low-pressure turbine final stage is that high centrifugal stress occurs in a blade portion or a dovetail during rotation of the turbine bucket. As an example that dealt with the problem, there is a case where the blade portion is made of a titanium alloy lighter than a steel-based material in order to reduce a centrifugal force acting on the blade (see JP-A-2003-65002). However, the titanium alloy is inferior to the steel-based alloy in cost or the like.
A blade made of a steel-based material may be intended to be increased in length. In such a case, a sectional area of the blade at each blade-height (the sectional area of the blade as viewed from the radially outer-side at a certain blade-height) must be increased from the blade root to the blade tip according to centrifugal force acting on each blade-height so that the centrifugal stress acting on the blade may not exceed a limit value of material strength. The material density of the steel-based material is approximately twice that of the titanium alloy. The cross-section of the blade root needs to fully carry the centrifugal force caused by the weight of the blade. Thus, a significantly large sectional area is required. This case poses the following problems: since the shape of the blade root becomes large, a sufficient width of a steam passage cannot be ensured; and since the weight of the blade becomes too large, high centrifugal stress occurs in the dovetail. This therefore necessitates a shape of the blade root that can ensure the steam passage and a dovetail that can resist high centrifugal stress.
Another of the major problems involved in the increased length of a bucket of a low-pressure turbine final stage is vibration of the turbine bucket. In general, the turbine bucket is constantly excited in a wide range of frequency by the flow of working fluid (steam) and by a disturbing component of the flow. The vibration response of a blade structure to such exciting force is influenced by a natural vibration frequency and the size of damping force at each vibration mode. The rigidity of a blade lowers with increased length of the blade, which lowers the natural vibration frequency, increasing the vibration response.
It is an object of the present invention to provide a turbine bucket that can make centrifugal stress acting on a blade portion or dovetail not greater than a limit value of a material and that is provided with a shape of blade root that can ensure a steam passage even if the blade is increased in length in order to increase an exhaust area.
It is another object of the present invention to provide a turbine blade that can reduce vibration response of the blade occurring during operation.
The present invention is characterized in that a blade portion of a turbine bucket has a suction surface and a pressure surface which are each formed, at a turbine blade root, of three areas consisting of a steam inlet side area with curvature, a steam outlet side area with curvature, and an area put between the two areas with the suction surface and the pressure surface formed in approximately straight lines.
In addition, the present invention is characterized in that the turbine bucket is formed at a tip portion with a first connection member extending to a suction side of the blade portion and to a pressure side thereof and is formed between a root of the turbine bucket and the first connection member with second connection member extending to the suction side of the blade portion and the pressure side thereof, and in that the turbine bucket is formed at a root portion with a dovetail inserted into a corresponding one of a plurality of grooves which are straightly cut from a rotor-axial end face side so as to be located on a turbine disk outer portion of a rotor and arranged in a blade rotating direction.
The present invention can provide a turbine bucket provided with a shape of the blade root that can make centrifugal stress acting on a blade or dovetail not greater than a limit value of a material even if the blade is increased in length in order to increase an exhaust area and that can ensure a steam passage. Further, the present invention can provide a turbine bucket that can reduce vibration response of a blade portion occurring during operation.
In particular, the present invention can provide a steel (martensite steel) turbine bucket that can make centrifugal stress acting on a blade or dovetail not greater than a limit value of a material, has such a superior damping characteristic as to reduce vibration response of the blade portion occurring during operation, and has an exhaust area exceeding 9.6 m2 in steam turbine final stage buckets for a rated speed 3600 rpm machine or exceeding 13.8 m2 in steam turbine final state buckets for a rated speed 3000 rpm machine.
A description will hereinafter be made of preferred embodiments of the present invention with reference to the drawings.
The platform 15 forms the radially inner surface of a steam passage. The circumferential width of the platform 15 is generally formed to have a blade pitch t. The turbine axial width of the platform 15 is formed larger than the turbine axial width BW of the blade (see
A description is made of an airfoil, in blade root section, of the bucket according to the embodiment of the present invention with reference to
A suction surface 7 and a pressure surface 8 in blade root section according to the embodiment of the present invention are each formed to have a curve with a certain curvature extending from a blade leading edge 9 to a blade trailing edge 10 and including a curve area 12 (inlet-side curve area), a curve area 13 (outlet-side curve area) and an almost straight area 11 (straight area) connecting the curve areas 12 and 13.
When a final stage airfoil of a low-pressure turbine is to be determined, it is important to determine the sectional area of a blade tip and that of a blade root. The sectional area of the blade tip determines the weight of the blade tip, which determines centrifugal force acting on a portion below the blade tip. The sectional area of a radially lower side portion from the blade tip is determined so as to resist the centrifugal force. This is repeated from the blade tip to the blade root to determine the sectional area of the blade root.
In this way, the sectional area of the blade root can progressively be reduced as the weight of the blade tip is reduced. Thus, the weight of the entire blade can be reduced.
It is to be noted that although the steel blade of a 3600 rpm machine with an exhaust area of about 9.6 m2 is herein taken as an example for explanation, the explanation given herein also applies in the same manner to a steel blade of a 3000 rpm machine with an exhaust area of about 13.8 m2 on the basis of a scaling relation. In other words, the scaling relation can be established between the 3000 rpm machine and the 3600 rpm machine with respect to blades of the low-pressure final stage. For the 3000 rpm machine, a blade with a length 1.2 times (3600/3000) the length of the 3600-rpm-machine blade is used in inverse proportion to the rotational speed (e.g., a 40-inch blade of the 3600 rpm machine corresponds to a 48-inch blade of the 3000 rpm machine, and they are the same in shape but differ only in size). The scaling relation applies not only to the blades but to rotor external diameters, etc. Once the scaling relation is satisfied, it also applies to performance and vibration properties between the blades of the two machines. Therefore, designing either of the blades of the 3000 rpm machine or of the 3600 rpm machine is substantially equivalent to designing both of them. When the blade of the 3000 rpm machine is to be designed, its blade length is 1.2 times that of the 3600 rpm machine as mentioned above, resulting in an exhaust area 1.44 times (1.2×1.2) as large as that of the 3600-rpm-machine blade; accordingly, if an exhaust area of the 3600-rpm-machine blade is 9.6 m2, the exhaust area of the 3000-rpm-machine blade is about 13.8 m2 (9.6×1.2×1.2).
The sectional area distribution of the second blade in
The sectional shape of the blade root is next described. The requirements of the airfoil are as below in terms of fluid performance. The passage width 14 between the blades shown in
In terms of strength the airfoil needs to be placed on the platform 15 without protruding therefrom.
In order to ensure the passage width 14 between the blades through which steam flows, in terms of fluid performance, it is necessary to set an average thickness ratio of the blade at 0.35 or less. This average thickness ratio of the blade is obtained by making the blade average thickness Tb dimensionless with respect to the pitch t between adjacent blades. The blade average thickness Tb is represented in the formula, Tb=A/BW, where A is the blade sectional area and BW is blade turbine axial width. The average thickness ratio of the blade is equivalent to the sectional area shown in
In the convention blades including the first blade, a ratio of the blade turbine axial directional width BW at the blade root section to the blade pitch t, BW/t, is equal to about 4. If the turbine axial width BW of the second blade is made equal to that of the conventional blade, the average thickness ratio of the second blade is equal to about 0.42. To set the average thickness ratio at 0.35 or less, it is desirable that the ratio of the blade turbine axial width BW to the blade pitch t, BW/t, be made equal to 5 (=4×0.42÷0.35) or more.
It is desirable that the inlet angle βm of the blade leading edge 9 and the outlet angle γm of the blade trailing edge 10 be determined to approximately match with the inflow angle βs and outflow angle γs, respectively, of steam. In addition, it is desirable that the suction and pressure surfaces, 7 and 8, of the blade be each formed to have a curve without an abrupt change of curvature, i.e., with gentle curvature. However, if it is intended that the inlet angle βm of the blade leading edge 9 and the outlet angle γm of the blade trailing edge 10 match with the inflow angle βs and outflow angle γs, respectively, of steam and further the suction and pressure surfaces of the blade be each formed to have a curve with gentle curvature close to uniform curvature, the blade will have a large camber so that it cannot be mounted on the platform 15.
On the other hand, in order to mount the blade on the platform 15, the suction surface 7 and pressure surface 8 of the blade excluding the inlet-side curve area 12 and outlet-side curve area 13 of the blade may each be intended to have a curve with an approximately uniform curvature. In such a case, since the inlet angle βm of the blade leading edge and the outlet angle γm of the blade trailing edge are made matched with the inflow angle βs and outflow angle γs, respectively, of steam, the curvatures at each of the blade inlet side and outlet side are abruptly increased. At a portion with a large curvature, flow may abruptly be accelerated to thereafter develop a boundary layer. In the worst case, the boundary layer may separate from the suction surface of the blade on the blade outlet side or blade inlet side. Thus, performance may be likely to deteriorate significantly.
To overcome this, the embodiment of the present invention adopts an airfoil as shown in
Opposed surfaces 18 and 19 (18′ and 19′) of the integral covers of the adjacent blades and opposed surfaces 20 and 21 (20′ and 21′) of the tie-bosses of the adjacent blades are formed to restrain the untwisting moments acting on the blades during rotation. The adjacent buckets 1 and 1′ are connected with each other by bringing the adjacent surfaces 18 and 19′ into contact with each other during rotation.
The adjacent blades are connected each other over the full circumference of the blades to have a vibration characteristic as a full circumferential group of blades. The natural vibration frequency of the blade is significantly increased compared with the case where the blades are not connected to each other, with the result that low, first-order bending frequency which is likely to increase vibration response of the blade disappears. In addition, joining together the blades by bringing their surfaces into contact with each other produces an effect that the friction of the surfaces reduces the vibration response.
One of the problems resulting from the increased length of the blade is lowered rigidity of the blade, which lowers the natural vibration frequency, thereby increasing the vibration response. However, the blade connection structure of the present embodiment according to the invention can reduce the vibration response.
Further, if the airfoil in blade-root cross-section shown in
Thus, the blade connection structure and airfoil in the blade root section shown in the present embodiment further can reduce the vibration response of the blade.
Since the axial-entry-type dovetail 24 shown in
One of the problems caused by the increased length of the blade is increased centrifugal stress of the dovetail due to the increased weight of the blade and to the increased centrifugal stress. However, the adoption of such a dovetail can achieve the reduced weight of the blade and the reduced centrifugal stress.
Referring to
For comparison,
If all the blades in the circumference, each having the curved-axial-entry groove, are collectively inserted into corresponding disk grooves 9, they are each inserted along the circular arc of the disk groove 9. In view of the state where the blades are slightly inserted into the ends of the disk grooves 9, the blades are rotated clockwise when all of them are implanted. As shown in
As shown in
In contrast to this, to deal with the increased length of the blade, the embodiment of the present invention adopts the airfoil in blade root section shown in
The steam turbine of the embodiment according to the invention can satisfy performance with respect to the blade root section, reduce the vibration response of the blade, and provide a superior centrifugal strength characteristic.
Number | Date | Country | Kind |
---|---|---|---|
2007-015739 | Jan 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5480285 | Patel et al. | Jan 1996 | A |
6341941 | Namura et al. | Jan 2002 | B1 |
6682306 | Murakami et al. | Jan 2004 | B2 |
20060118215 | Hirakawa et al. | Jun 2006 | A1 |
20060222501 | Nogami et al. | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
62253 | Jun 1923 | JP |
04-005402 | Jan 1992 | JP |
2003-065002 | Mar 2003 | JP |
2005-194626 | Jul 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20080206065 A1 | Aug 2008 | US |