Since the development of the gas turbine jet engine, blade tip clearance within the interior of the casing has been a challenging problem. Blade tip and inter-stage sealing have taken on a prominent role in engine design since the late 1960's. This is because the clearance between the blade tips and surrounding casing tends to vary due primarily to changes in thermal and mechanical loads on the rotating and stationary structures. On today's largest land-based and aero turbine engines, the high pressure turbine case (“HPTC”) and low pressure turbine case (“LPTC”) have such large diameters that they are more susceptible to expanding excessively and becoming out-of-round, exacerbating the blade tip clearance problem.
Reduced clearance in both the HPTC and the LPTC can provide dramatic reductions in specific fuel consumption (“SFC”), compressor stall margin and engine efficiency, as well as increased payload and mission range capabilities for aero engines. Improved clearance management can dramatically improve engine service life for land-based engines and time-on-wing (“TOW”) for aero engines. Deterioration of exhaust gas temperature (“EGT”) margin is the primary reason for aircraft engine removal from service. The Federal Aviation Administration (“FAA”) certifies every aircraft engine with a certain EGT limit. EGT is used to indicate how well the HPTC is performing. Specifically, EGT is used to estimate the disk temperature within the HPTC. As components degrade and clearance between the blade tips and the seal on the interior of the casing increase, the engine has to work harder (and therefore runs hotter) to develop the same thrust. Once an engine reaches its EGT limit, which is an indication that the high pressure turbine disk is reaching its upper temperature limit, the engine must be taken down for maintenance. Maintenance costs for major overhauls of today's large commercial gas turbine jet engines can easily exceed one million dollars.
Referring now to the Figures, in which like reference numerals and names refer to structurally and/or functionally similar elements thereof,
Labyrinth seal designs vary by application. Sometimes the labyrinth seals are located on the blade tips, and sometimes they are located on the inside diameter of the cases as shown in
Wear mechanisms for Labyrinth Seal 210 can be generally categorized into three major categories: rubbing (blade incursion), thermal fatigue, and erosion. Engine build clearances in both high pressure and low pressure turbine cases are chosen to limit the amount of blade rubbing. Studies have shown that improved blade tip clearances in the high pressure and low pressure turbine cases can result in significant life cycle cost (“LCC”) reductions.
As a cold engine is started, a certain amount of Blade Tip Clearance 212 exists between each Labyrinth Seal 210 and the tip of Blades 208. Blade Tip Clearance 212 is rapidly diminished as the engine speed is increased for takeoff due to the centrifugal load on Rotor 206 as well as the rapid heating of Blades 208, causing the rotating components to grow radially outward. Meanwhile, Low Pressure Turbine Case 204 expands due to heating but at a slower rate. This phenomenon can produce a minimum Blade Tip Clearance 212 “pinch point.” As Low Pressure Turbine Case 204 expands due to heating after the pinch point, Blade Tip Clearance 212 increases. Shortly after Low Pressure Turbine Case 204 expansion, Rotor 206 begins to heat up (at a slower rate than Low Pressure Turbine Case 204 due to its mass) and Blade Tip Clearance 212 narrows. As the engine approaches the cruise condition, Low Pressure Turbine Case 204 and Rotor 206 reach thermal equilibrium and Blade Tip Clearance 212 remains relatively constant.
There can be tremendous benefit in narrowing Blade Tip Clearance 212 during the cruise condition. This is often where the greatest reduction in SFC can be gained (longest part of the flight profile). On the other hand, rubbing is generally to be avoided. Minimal clearance typically is maintained at takeoff to ensure thrust generation as well as keeping EGT below its established limit. Hence, it has been the goal of many control systems to attempt to maintain a minimal Blade Tip Clearance 212 while avoiding rubbing over the entire flight profile.
Engine temperatures generally play a large role in determining the operational Blade Tip Clearances 212. Gas turbine performance, efficiency, and life are directly influenced by Blade Tip Clearances 212. Tighter Blade Tip Clearances 212 can reduce air leakage over the tips of Blades 208. This can increase turbine efficiency and permit the engine to meet performance and thrust goals with less fuel bum and lower rotor inlet temperatures. Because the turbine runs at lower temperatures, while producing the same work, hot section components can have increased cycle life. The increased cycle life of hot section components can increase engine service life (TOW) by increasing the time between overhauls.
Engine SFC and EGT are generally directly related to HPTC blade tip clearance. One study has shown that for every 0.001 inch increase in HPTC blade tip clearance, SFC increases approximately 0.1%, while EGT increases one ° C. Therefore, it is believed that a 0.010 inch HPTC blade tip clearance decrease may roughly produce a one % decrease in SFC and a ten ° C. decrease in EGT. Military engines generally show slightly greater HPTC blade tip clearance influence on SFC and EGT due to their higher operating speeds and temperatures over large commercial engines. Improvements of this magnitude may produce large savings in annual fuel and engine maintenance costs amounting to over hundreds of millions of dollars per year.
Reducing fuel consumption may also reduce aero engine total emissions. Recent estimates indicate that Americans alone now fly 764 million trips per year (2.85 airline trips per person). The energy used by commercial aircraft has nearly doubled over the last three decades. The increased fuel consumption accounts for thirteen % of the total transportation sector emissions of carbon dioxide (CO2). Modem aero engine emissions are made up of over seventy-one % CO2 with about twenty-eight % water (H2O) and 0.3% nitrogen oxide (NO2) along with trace amounts of carbon monoxide (CO), sulfur dioxide (SO2), etc. Air transport accounts for 2.5% (600 million tons) of the world's CO2 Production. Emissions from land-based engines, primarily for power generation, contributes amounts in addition to these totals. Clearly a reduction in fuel bum can significantly reduce aero and land-based engine emissions.
Current large commercial engines have cycle lives (defined as the time between overhauls) that vary significantly, ranging typically between 3,000 to 10,000 cycles. The cycle life is primarily determined by how long the engine retains a positive EGT margin. New engines or newly overhauled engines are shipped with a certain cold build blade tip clearance which increases with time. As the engine operating clearances increase, the engine generally works harder (hotter) to produce the same work and is therefore less efficient. This increase in operating temperature, particularly takeoff EGT, can further promote the degradation of hot section components due to thermal fatigue. It is believed that retaining engine takeoff EGT margin by maintaining tight blade tip clearances can dramatically increase engine cycle life. This could also lead to huge savings in engine maintenance over a period of years due to the large overhaul costs.
Previous attempts at blade tip clearance management can generally be categorized by two control schemes, active clearance control (“ACC”) and passive clearance control (“PCC”). PCC is defined as any system that sets the desired clearance at one operating point, namely the most severe transient condition (e.g., takeoff, re-burst, maneuver, etc.). ACC, on the other hand, is defined as any system that allows independent setting of a desired blade tip clearance at more than one operating point. The problem with PCC systems is that the minimum clearance, the pinch point, that the system must accommodate often leaves an undesired larger clearance during the much longer, steady state portion of the flight (i.e., cruise).
Typical PCC systems include better matching of rotor and stator growth throughout the flight profile, the use of abradables to limit blade tip wear, the use of stiffer materials and machining techniques to limit or create distortion of static components to maintain or improve shroud roundness at extreme conditions, and the like. Engine manufacturers began using thermal ACC systems in the late 1970's and early 1980's. These systems utilized fan air to cool the support flanges of the HPTC, reducing the case and shroud diameters, and hence blade tip clearance, during cruise conditions.
It is believed that all of the approaches described above have significant problems associated with them. Some are quite expensive, others achieve little results, especially during cruise where the greatest advantages are gained, or require actuation through the case due to the lack of current high temperature actuator capabilities, which raise secondary sealing issues and added weight and mechanical complexity.
Notches 302, which may be of several different geometries as described in detail below, are manufactured circumferentially, typically through machining, into the outside diameter of Low Pressure Turbine Case 204 to coincide with one or more locations of the Labyrinth Seals 210. In addition to locations corresponding to one or more of the locations of the Labyrinth Seals 210, notches may be machined circumferentially in locations corresponding to “hot spots” that have been identified in Low Pressure Turbine Case 204 through computer modeling, through monitoring surface temperatures, or through visual inspections for cracks when the engine is overhauled. For existing engines, Low Pressure Turbine Case 204 is typically removed in order to repair cracks resulting from the these “hot spots”. After such repairs, groves may then be applied through a weld repair through machining. The external rings would then be shrink interference fit in the grooves. It is appreciated that the stiffener rings may be located at other positions of a turbine case, depending upon the particular application It is further appreciated that sizes, dimensions, shapes, materials and clearances may vary, depending upon the particular application.
In one embodiment, Stiffener Rings 304 (shown in cross section in
In one example, Low Pressure Turbine Case 204 may be fifty inches in outside diameter at the portion where Blade 208 and Labyrinth Seal 210 are located. In one embodiment, the Stiffener Ring 304 may be fabricated as a solid, unitary or one-piece, continuous or seamless member forged or machined in a closed loop shape. In another embodiment, the Stiffener Ring 304 may be fabricated using an open loop-shaped member and bonding the ends together by welding, for example, to form a closed loop shape. Low Pressure Turbine Case 204 is made of nickel-based super alloy, such as Inconel 718, as is Stiffener Ring 304 through a forging process. Super alloy Inconel 718 is a high-strength, complex alloy that resists high temperatures and severe mechanical stress while exhibiting high surface stability, and is often used in gas turbine jet engines. It is appreciated that the stiffener ring and the turbine case may be made of a variety of materials, depending upon the particular application. Heating Stiffener Ring 304 to a calculated temperature will cause Stiffener Ring 304 to expand, yielding an appropriate Ring Clearance 404 when Low Pressure Turbine Case 204 is at ambient air temperature of approximately seventy ° F. Alternatively, Low Pressure Turbine Case 204 may be cooled with liquid nitrogen or other means to a calculated temperature to cause Low Pressure Turbine Case 204 to shrink in diameter, yielding an appropriate Ring Clearance 404 when Stiffener Ring 304 is at ambient air temperature of approximately seventy ° F. Alternatively, an appropriate Ring Clearance 404 may be achieved through a combination of cooling Low Pressure Turbine Case 204 and heating Stiffener Ring 304, each to various calculated temperatures. Increasing or decreasing the inside diameter of Stiffener Ring 304 will result in more or less radially compressive circumferential force and tensile stress as required for a particular application, and within the stress limits of the material that Stiffener Ring 304 is made from.
In addition, the machining for Low Pressure Turbine Case 204 may be done in a first direction, such as radially, and the machining for Stiffener Ring 304 may be done in a second direction, such as axially, which is more or less perpendicular to the first direction. Since machining leaves a spiral, or record, continuous groove on the machined surfaces, the grooves on each surface will align in a cross-hatch manner to each other, increasing the frictional forces between the two surfaces and reducing the potential for movement of Stiffener Ring 304 within Notch 302, including axial or rotational movement. The plurality of grooves on Stiffener Ring 304, which may be made of a nickel-base super alloy for example, may be harder than the plurality of grooves on Notch 302 of Low Pressure Turbine Case 204, which is typically made of titanium, or in other low pressure turbine casings, possibly steel or aluminum. The nickel-base super alloy grooves can dent into or form an indentation in the softer titanium, steel, or aluminum grooves. Alternatively, Stiffener Ring 304 may simply be spot welded in one or more locations to Notch 302, or bolted to one or more flanges secured to Notch 302, to keep Stiffener Ring 304 from spinning or otherwise moving in relation to Notch 302. Machining in cross directions may not be needed in this case.
By thus positioning Stiffener Rings 304 in the manner described, Blade Tip Clearance 212 may be improved in some applications, especially during cruise operation of the engine in some applications. An engine designer may as a result, design the engine to have a reduced blade tip clearance than may otherwise be appropriate for a given engine design absent such stiffener rings. It is also appreciated that other or different benefits, advantages, improvements or other features may be utilized alone or in combination, depending upon the particular application. In one application, the radially compressive circumferential force (represented by arrows in
In many engine designs, heat is mainly dissipated from the outside surface area of Low Pressure Turbine Case 204 by convection. Another benefit which may be achieved by adding Stiffener Rings 304 to Low Pressure Turbine Case 204 is that heat may be dissipated at a greater rate because Stiffener Rings 304 can act as cooling fins, which can result in cooler operating temperatures within Low Pressure Turbine Case 204. This cooling may also contribute to less expansion and smaller Blade Tip Clearance 212. Also, Stiffener Rings 304 can help to maintain roundness of Low Pressure Turbine Case 204. Again, it is appreciated that other or different benefits, advantages, improvements or other features may be utilized alone or in combination, depending upon the particular application.
One skilled in the art will recognize that, in addition to the reverse taper and chevron designs for the notch and stiffener ring as shown in
Thus, in one aspect of the present description, the amount of expansion that would normally occur due to heating in the LPTC and the HPTC, is reduced, and consequently blade tip clearance may be improved. As stated above, increased blade tip clearance can accelerate the effects of low cycle fatigue and erosion due to increased temperatures in the HPTC and LPTC, and degrade EGT margin and engine life. In general, for large gas turbine engines, it is believed that blade tip clearance reductions on the order of 0.010 inch can produce decreases in SFC of one % and EGT of ten ° C. It is believed that improved blade tip clearance of this magnitude can produce fuel and maintenance savings of over hundreds of millions of dollars per year. Reduced fuel bum can also reduce aircraft emissions, which currently account for thirteen % of the total U.S. transportation sector emissions of CO2. In another aspect, blade tip clearances can be reduced at cruise condition to make a significant impact on SFC and EGT margin and improve turbine efficiency. Moreover, the increased outer surface area of the HPTC and LPTC due to the stiffener rings can, in certain embodiments, increase cooling and result in lower internal temperatures which can lengthen the cycle life of the engine. In yet another aspect, an increase in payload per engine may be achieved due to the improvement in blade tip clearance. Additional pounds of freight may be transported per takeoff and landing. It is further appreciated that features of the present description could readily replace expensive passive clearance control options. It is appreciated that reductions in one or more of out-of-roundness, blade tip clearance, SFC, EGT or polluting emissions may be achieved utilizing one or more features herein described. For example, fabricating a stiffener ring from a material having a lower coefficient of thermal expansion than that of the turbine case material, may facilitate achieving one or more of these or other reductions. Similarly, it is appreciated that one or more of these reductions or other benefits may be achieved fabricating a turbine case and stiffener ring of the same material.
In
In
Each Actuator Means 1002 is connected to Controller 1008 through Electrical/Electronic Connections 1006. Controller 1008 receives temperature readings from multiple temperature sensors located near each Stiffener C-Ring 1004 (not shown). It is also possible to derive the LPTC temperature from EGT temperature readings and use these readings for feedback to Controllers 1008. As the temperatures being monitored throughout Low Pressure Turbine Case 1000 rise, Controller 1008 processes the temperature data and determines how much each of the ends of each Stiffener C-Ring 1004 need to be pulled together by each Actuator Means 1002 in order to exert the proper compressive circumferential force on Low Pressure Turbine Case 1000 to provide a suitable benefit such as maintaining an optimum blade tip clearance or counterbalancing a “hot spot”, for example.
In an alternate embodiment, instead of a c-ring, a chain-like multiple segmented ring may be coupled together by Actuator Means 1002. In another embodiment, the stiffener rings may be made of a strip of non-metallic material, such as Kevlar®. The inside surface of the Kevlar®, or the notch surface, or both may also be coated with Teflon® or some other lubricating substance to facilitate slippage when tightened.
Having described various features, it will be understood by those skilled in the art that many and widely differing embodiments and applications will suggest themselves without departing from the scope of the present description.
This application claims the benefit of U.S. Provisional Application No. 60/571,701, filed on May 17, 2004, titled “METHOD AND SYSTEM FOR IMPROVED BLADE TIP CLEARANCE IN A GAS TURBINE JET ENGINE.” A nonprovisional U.S. application entitled “METHOD AND SYSTEM FOR IMPROVED BLADE TIP CLEARANCE IN A GAS TURBINE JET ENGINE” is being filed concurrently by L. James Cardarella, John Usherwood and Andres Del Campo, wherein the contributions by John Usherwood and Andres Del Campo have been assigned to Carlton Forge Works, a California corporation.
Number | Date | Country | |
---|---|---|---|
60571701 | May 2004 | US |