The present embodiments are directed to methods and devices for cooling the trailing edge portion of a turbine airfoil. More specifically, the present embodiments are directed to methods and devices including a turbine component with radial cooling channels along the trailing edge.
Modern high-efficiency combustion turbines have firing temperatures that exceed about 2000° F. (1093° C.), and firing temperatures continue to increase as demand for more efficient engines continues. Gas turbine components, such as nozzles and blades, are subjected to intense heat and external pressures in the hot gas path. These rigorous operating conditions are exacerbated by advances in the technology, which may include both increased operating temperatures and greater hot gas path pressures. As a result, components, such as nozzles and blades, are sometimes cooled by flowing a fluid through a manifold inserted into the core of the nozzle or blade, which exits the manifold through impingement holes into a post-impingement cavity, and which then exits the post-impingement cavity through apertures in the exterior wall of the nozzle or blade, in some cases forming a film layer of the fluid on the exterior of the nozzle or blade.
The cooling of the trailing edge of a turbine airfoil is important to prolong its integrity in the hot furnace-like environment. While turbine airfoils are often made primarily of a nickel-based or a cobalt-based superalloy, turbine airfoils may alternatively have an outer portion made of one or more ceramic matrix composite (CMC) materials. CMC materials are generally better at handling higher temperatures than metals. Certain CMC materials include compositions having a ceramic matrix reinforced with coated fibers. The composition provides strong, lightweight, and heat-resistant materials with possible applications in a variety of different systems. The materials from which turbine components, such as nozzles and blades, are formed, combined with the particular conformations which the turbine components include, lead to certain inhibitions in the cooling efficacy of the cooling fluid systems. Maintaining a substantially uniform temperature of a turbine airfoil maximizes the useful life of the airfoil.
The manufacture of a CMC part typically includes laying up pre-impregnated composite fibers having a matrix material already present (prepreg) to form the geometry of the part (pre-form), autoclaving and burning out the pre-form, infiltrating the burned-out pre-form with the melting matrix material, and any machining or further treatments of the pre-form. Infiltrating the pre-form may include depositing the ceramic matrix out of a gas mixture, pyrolyzing a pre-ceramic polymer, chemically reacting elements, sintering, generally in the temperature range of 925 to 1650° C. (1700 to 3000° F.), or electrophoretically depositing a ceramic powder. With respect to turbine airfoils, the CMC may be located over a metal spar to form only the outer surface of the airfoil.
Examples of CMC materials include, but are not limited to, carbon-fiber-reinforced carbon (C/C), carbon-fiber-reinforced silicon carbide (C/SiC), silicon-carbide-fiber-reinforced silicon carbide (SiC/SiC), alumina-fiber-reinforced alumina (Al2O3/Al2O3), or combinations thereof. The CMC may have increased elongation, fracture toughness, thermal shock, dynamic load capability, and anisotropic properties as compared to a monolithic ceramic structure.
In an embodiment, a turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. A plurality of radial cooling channels in the trailing edge portion of the airfoil permit radial flow of a cooling fluid through the trailing edge portion. Each radial cooling channel has a first end at a lower surface at a root edge of the trailing edge portion or at an upper surface at a tip edge of the trailing edge portion and a second end opposite the first end at the lower surface or the upper surface.
In another embodiment, a method of making a turbine component includes forming an airfoil having a leading edge, a trailing edge portion extending to a trailing edge, and a plurality of radial cooling channels in the trailing edge portion. The radial cooling channels permit radial flow of a cooling fluid through the trailing edge portion. Each radial cooling channel has a first end at a lower surface at a root edge of the trailing edge portion or at an upper surface at a tip edge of the trailing edge portion and a second end opposite the first end at the lower surface or the upper surface.
In another embodiment, a method of cooling a turbine component includes supplying a cooling fluid to an interior of the turbine component. The turbine component includes a root and an airfoil extending from the root to a tip opposite the root. The airfoil forms a leading edge and a trailing edge portion extending to a trailing edge. The trailing edge portion has a plurality of radial cooling channels arranged to permit radial flow of a cooling fluid through the trailing edge portion. Each radial cooling channel has a first end at a lower surface at a root edge of the trailing edge portion or at an upper surface at a tip edge of the trailing edge portion and a second end opposite the first end at the lower surface or the upper surface. The method also includes directing the cooling fluid through the radial cooling channels through the trailing edge portion of the airfoil.
Other features and advantages of the present invention will be apparent from the following more detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.
Provided is a method and a device for cooling the trailing edge of a turbine airfoil with radial cooling channels along the trailing edge portion of the turbine airfoil.
Embodiments of the present disclosure, for example, in comparison to concepts failing to include one or more of the features disclosed herein, provide cooling in a turbine airfoil, provide a more uniform temperature in a cooled turbine airfoil, provide a turbine airfoil with an enhanced lifespan, or combinations thereof.
As used herein, radial refers to orientation directionally between a first surface, such as lower surface 52, at a lower radial height and a second surface, such as upper surface 56, at a higher radial height from the axis of the turbine.
As used herein, a trailing edge portion refers to a portion of an airfoil at the trailing edge without chambers or other void space aside from the cooling channels formed therein, as described herein.
Referring to
The generally arcuate contour of the airfoil 12 is shown more clearly in
In either case, the radial cooling channels 40 in the trailing edge portion 42 permit a cooling fluid supplied to the lower portion at the base 13 and/or the upper portion at the tip 14 of the trailing edge portion 42 at the base 13 to flow through at least a portion of the trailing edge portion 42 and out of the lower portion at the base 13 or the upper portion at the tip 14 of the trailing edge portion 42 during operation of a turbine including the turbine component 10. The airfoil 12 also includes one or more chambers 32 to which cooling fluid may be provided by way of the root 11 or by way of the tip 14 of the turbine component 10.
Referring to
Referring to
Referring to
Referring to
In some embodiments, the radial cooling channels 40 are formed substantially along the line 4-4 of the trailing edge portion 42, such as shown in
The radial cooling channels 40 in the trailing edge portion 42 may have any geometry, including, but not limited to, a wavy contour as shown in
The varying cross sectional areas of the radial cooling channels 40 of
The tapering cross sectional areas of the radial cooling channels 40 of
The cross section of a radial cooling channel 40 may have any shape, including, but not limited to, a round shape, an elliptical shape, a racetrack shape, and a parallelogram. The size and shape of the cross section of the radial cooling channel 40 may vary from the first end 50 to the second end 54, depending on the local cooling effectiveness required of the channel. The walls of the radial cooling channel 40 may be smooth or may have one or more features to augment the internal heat transfer coefficients by disrupting the boundary layer flow, such as by turbulators located locally or all along the length of the radial cooling channel 40.
When the airfoil 12 includes a CMC shell 22, at least a portion of the radial cooling channels 40 may be formed between layers of the CMC material. In some embodiments, all of the radial cooling channels 40 are formed between CMC layers. In some embodiments, the radial cooling channels 40 are formed by machining the CMC material after formation of the CMC material. In other embodiments, a sacrificial material is burned or pyrolyzed out either during or after formation of the CMC material to form the radial cooling channels 40. In some embodiments, the CMC shell 22 is made as two parts and glued together to form the trailing edge portion 42.
When the airfoil 12 is formed as a metal part 30, the metal part may be formed by casting or alternatively by metal three-dimensional (3D) printing. In some embodiments, the metal part 30 is formed as two metal pieces that are brazed or welded together, such as, for example, along line 4-4 of
Metal 3D printing enables precise creation of a turbine component 10 including complex radial cooling channels 40. In some embodiments, metal 3D printing forms successive layers of material under computer control to create at least a portion of the turbine component 10. In some embodiments, powdered metal is heated to melt or sinter the powder to the growing turbine component 10. Heating methods may include, but are not limited to, selective laser sintering (SLS), direct metal laser sintering (DMLS), selective laser melting (SLM), electron beam melting (EBM), and combinations thereof. In some embodiments, a 3D metal printer lays down metal powder, and then a high-powered laser melts that powder in certain predetermined locations based on a model from a computer-aided design (CAD) file. Once one layer is melted and formed, the 3D printer repeats the process by placing additional layers of metal powder on top of the first layer or where otherwise instructed, one at a time, until the entire metal component is fabricated.
The radial cooling channels 40 are preferably formed in the trailing edge portion 42 of the airfoil 12 to permit passage of a cooling fluid to cool the trailing edge portion 42. The radial cooling channels 40 may have any contour that provides passage of a cooling fluid in a generally radial direction, including, but not limited to, wavy, serpentine, varying cross sectional areas, straight, or combinations thereof.
In some embodiments, the dimensions, contours, and/or locations of the radial cooling channels 40 are selected to permit cooling that maintains a substantially uniform temperature in the trailing edge portion 42 during operation of a turbine including the turbine component 10.
Radial cooling channels 40 along the trailing edge 16 of the airfoil 12 provide passageways for cooling fluid generally in the radial direction with respect to the turbine rotor. The radial cooling channels 40 may have any geometry, including, but not limited to, straight radial holes that may include stem-drilled holes, complex geometries such as serpentine or wavy, or combinations thereof. More complex geometries than stem-drilled holes may be accommodated in the trailing edge portion, benefitting heat transfer and uniform temperature distribution in the airfoil 12. In some embodiments, the radial cooling channels 40 have variations in the cross sectional area of the radial cooling channel 40, with portions of different cross sectional area along the length of the radial cooling channels 40. In some embodiments, the radial cooling channels 40 are staggered perpendicular to the turbine axis with some near the surface and some buried farther beneath the surface.
While the invention has been described with reference to one or more embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. In addition, all numerical values identified in the detailed description shall be interpreted as though the precise and approximate values are both expressly identified.
This invention was made with Government support under contract number DE-FE0024006 awarded by the Department of Energy. The Government has certain rights in the invention.