The present invention relates generally to fans, and more particularly to a turbine cooling fan and method of cooling of people or objects in warm environments.
The cooling of electronic equipment, people, and other apparatus by means of fans located in or around an object, to be cooled is a conventional expedient. The typical fan is supported in a free-standing cabinet, which also encloses the motor directly driving an air blower or fan, together with the controls for such apparatus. In selecting a suitable fan to cool a given piece of equipment or person, a multitude of factors must be considered before an intelligent choice of the particular type of fan can be used. Some of these factors include the size of the fan to be used, the power consumption, the efficiency, moisture considerations, and the temperature of the environment to name a few.
However, in many of applications, especially in connection with electronic equipment and metal in factories, cooling capability and not introducing moisture are some of the most important considerations. On the sideline of sporting events or in front of large crowds on a hot day, the cooling capability is the most importing consideration. Because a motor generates heat and because the cabinet is open, it is always the case that the typical fan simply blows warm air and circulates hot air, such as that accomplished when a fan is attached to the motor output shaft, does a less than adequate job at keeping the people or equipment cool since the air surrounding the motor and air it is circulating is not cool.
Air conditioners remove the heat from the interior of an occupied space, and solve the problem of cooling and dehumidifying the rooms they are installed in. They often use a fan to distribute the conditioned air to distribute into a large space but must be able to vent the hot air they produce outside, and thus are not optimal for applying direct cooling or cooling outdoors.
Thus, a way to directly cool electronic components, metal, factory equipment, and people by means of a cooling fan that does not introduce moisture into the environment is needed.
The disclosed system is directed to overcoming one or more of the problems set forth above.
The disclosure presented herein relates to a fan and method of cooling. More specifically, a fan and method of cooling using air supplied from a vortex tube to spin an air turbine, allowing a user of the fan or method of cooling to cool a person or object even when, for example the person or object that needs to be cooled is located outside or where the introduction of moisture would not be desirable. In one or more non-limiting examples, air supplied to a vortex tube, by either a motor, shop compressor, or other means, exits the vortex tube and spins a turbine that is connected to fan blades. Those of ordinary skill will appreciate that other uses may be foreseeable also and are included within the scope of the present description.
In one aspect, or more embodiments for a turbine fan are provided m the present description whereby the turbine fan includes a vortex tube, an air turbine, and one or more fan blades. In further non-limiting embodiments, the turbine fan also includes one or more of the following: a motor, heat exchangers, bearings, an air compressor, separation panel, and a cabinet. In a non-limiting embodiment, the cabinet encloses an air compressor, a motor, vortex tube, air turbine, heat exchangers, and one or more fan blades. In one embodiment, where shop compressed air is available, the motor and air compressor are not required. Further, in another embodiment the one or more fan blades and air turbine are secured within the cabinet. They are secured to the front of a separation panel or partition which separate a hot and a cold section of the cabinet. In a further embodiment, the motor and the compressor, when needed to supply air are mounted on back side the cabinet's separation panel. In this embodiment, the vortex tube protrudes thru said separation panel to provide cold air to power the turbine, resulting in fan spinning dispersing cold air.
The preceding and following embodiments and descriptions are for illustrative purposes only and are not intended to limit the scope of this disclosure. Other aspects and advantages of this disclosure will become apparent from the following detailed description.
A vortex tube is a mechanical device that separates a compressed gas into hot and cold streams. Pressurized gas is injected tangentially into a swirl chamber and accelerated to a high rate of rotation. Due to the conical nozzle at the end of the tube, only the outer shell of the compressed gas, is allowed to escape at that end. The remainder of the gas is forced to return, in an inner vortex of reduced diameter within the outer vortex.
A turbine is a machine for producing continuous power in which a wheel or rotor, typically fitted with vanes, is made to revolve by a fast-moving flow of water, steam, gas, air, or other fluid.
An air turbine is a turbine driven by airflow.
An air compressor is a device that converts power (using an electric motor, diesel or gasoline engine, etc.) into potential energy stored in pressurized air (i.e., compressed air). By one of several methods, an air compressor forces more and more air into a storage tank, increasing the pressure.
Air receivers are tanks used for compressed air storage.
A heat exchanger is a device used to transfer heat between a solid object and a fluid, or between two or more fluids. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact.
A bearing is a machine element that constrains relative motion to only the desired motion and reduces friction between moving parts. The design of the bearing may, for example, provide for free linear movement of the moving part or for free rotation around a fixed axis.
In the Summary above and in this Detailed Description, and the claims below, and in the accompanying drawings, reference is made to particular features of the invention. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, or a particular claim, that feature can also be used—to the extent possible—in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally.
The term “comprises” and grammatical equivalents thereof are used herein to mean that other components, ingredients, steps, etc. are optionally present. For example, an article “comprising” (or “which comprises”) components A, B, and C can consist of (i.e., contain only) components A, B, and C, or can contain not only components A, B, and C but also contain one or more other components.
Where reference is made herein to a method comprising two or more defined steps, the defined steps can be carried out in any order or simultaneously (except where the context excludes that possibility), and the method can include one or more other steps which are carried out before any of the defined steps, between two of the defined steps, or after all the defined steps (except where the context excludes that possibility).
The term “at least” followed by a number is used herein to denote the start of a range including that number (which may be a range having an upper limit or no upper limit, depending on the variable being defined). For example, “at least 1” means 1 or more than 1. The term “at most” followed by a number is used, herein to denote the end of a range, including that number (which may be a range having 1 or 0 as its lower limit, or a range having no lower limit, depending upon the variable being defined). For example, “at most 4” means 4 or less than 4, and “at most 40%” means 40% or less than 40%. When, in this specification, a range is given as “(a first number) to (a second number)” or “(a first number)-(a second number),” this means a range whose limits include both numbers. For example, “25 to 100” means a range whose lower limit is 25 and upper limit is 100 and includes both 25 and 100.
Certain terminology and derivations thereof may be used in the following description for convenience in reference only and will not be limiting. For example, words such as “upward,” “downward,” “left,” and “right” would refer to directions in the drawings to which reference is made unless otherwise stated. Similarly, words such as “inward” and “outward” would refer to directions toward and away from, respectively, the geometric center of a device or area and designated parts thereof. References in the singular tense include the plural, and vice versa, unless otherwise noted.
The present description includes one or more embodiments for a turbine fan and method of cooling, where compressed air is inserted into a vortex tube that cools said air, and upon leaving the vortex tube the cooled air spins an air turbine that has one or more fan blades attached. The spinning of the air turbine, and thus the one or more air blades, causes the blades to push said cooled air toward the desired object to be cooled. The one or more embodiments for turbine fan and cooling method include multiple elements for supplying the compressed air to the turbine fan. For example, in one or more embodiments, various motors, compressors, and air receiving tanks may be attached to the turbine fan. Elements included herein are meant to be illustrative, rather than restrictive. Persons having ordinary skill in the art relevant to the present disclosure may understand there to be equivalent elements that may be substituted with the present disclosure without changing the essential function or operation of the device.
Turning to
The air turbine 3, as shown in
In the
In the
The compressor shown in
In one embodiment, the turbine fan further includes a motor. This motor can be gas powered or electric, and is used to power the compressor 1. Compressors that do not have a built-in source of energy require a motor to be powered. In one embodiment, the turbine fan has a electric motor and is required to be plugged into an electric outlet in order to power the motor.
In a further embodiment, when the fan is being used in a setting that has access to compressed air, such as in a tool shop or factory, the turbine fan, does not need a motor or compressor. In this embodiment, the turbine fan can connect to the source of the compressed air, and attach directly to the heat exchangers. In this embodiment the air would flow through the heat exchangers to vortex tube. In even a further embodiment, the turbine fan does not have heat exchangers either, and the compressed air can connect directly into the vortex tube.
The heat exchangers 15 are used to transfer heat out of the air after it exits the compressor. In one embodiment, these heat exchangers are used to remove the heat from the air after it is supplied from an external compressed air source, such as a factory compressed air tank. In one embodiment, the heat exchangers are common fan heat exchangers that are commonly used with fans.
The vortex, tube, as show in
Turning to
In the
Advantageously, the present, description provides one or more embodiments of various types of turbine fans. Each turbine fan depicted herein provides advantages that overcome shortcomings of other types of fans that are used conventionally. Further, the various embodiments shown in the figures and described herein accommodate different purposes and may be used in various applications, including, but not limited, blowing cold air to cold people or an object without introducing moisture. It is noted that the various embodiments of the turbine fan presented herein may be used in many other ways other than to blow cold, air to cool a person. For example, the various turbine fans may generally be used to improve the cooling of industrial manufactured components. Thus, the various embodiments described in the present description include a number of novel and helpful components that provide enhanced cooling fans to benefit a user.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiments were chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated. The present invention according to one or more embodiments described in the present description may be practiced with modification and alteration within the spirit and scope of the appended claims. Thus, the description is to be regarded as illustrative instead of restrictive of the present invention.
This application claims priority to U.S. Provisional Application No. 62/454,023 filed Feb. 2, 2017. The content of the above application is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3630040 | Goldfarb | Dec 1971 | A |
4333754 | Peter | Jun 1982 | A |
4594084 | Lopez | Jun 1986 | A |
6691926 | Moen | Feb 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20180216852 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
62454023 | Feb 2017 | US |