This application is the U.S. national phase entry under 35 U.S.C. § 371 of International Application No. PCT/FR2013/052172, filed on Sep. 19, 2013, which claims priority to French Patent Application No. FR 1258959, filed on Sep. 25, 2012, the entireties of each of which are incorporated by reference herein.
The invention relates to an assembly comprising a turbine engine casing and a bladed rotor wheel arranged in the casing.
The casing may house one or more rotor wheels, mounted to rotate inside the casing.
In order to optimize the efficiency of the turbine engine, the blades are generally arranged in such a manner that their tips pass as close as possible to the inside wall of the casing.
This can sometimes lead to the tips of the blades coming into contact with the inside wall of the casing, in particular as a result of thermal expansion of the blades or of the blades lengthening under the effect of centrifugal forces, particularly during the first hours of operation of an aeroengine for an airplane or a helicopter.
In order to avoid such contacts damaging the wall of the casing, and in known manner, the inside surfaces of turbine engine casings are sometimes fitted with strips of abradable material (i.e. material that is put there to be subjected to abrasion), which strips are arranged inside the casing in register with the tips of the blades.
The length of the blades is then determined in such a manner that when the turbine engine is running at full speed the blades come into contact with the strip of abradable material.
Under the effect of this friction, during the initial hours of operation of the turbine engine, the strip of abradable material wears down until it reaches a shape that enables it no longer to come into contact with the blades. The shape that is obtained in this way is the shape that provides minimum clearance between the blade tips and the casing.
Nevertheless, the contacts and friction occurring between the strip of abradable material and the tips of the blades leads to wear, to vibration, or indeed to impacts that are prejudicial to long life and good operation of the turbine engine.
It is therefore necessary to minimize the magnitude of those events.
For this purpose, international application WO 2012/025357 describes a casing containing a rotor wheel in which the tips of the blades are arranged so as to be substantially shorter at their downstream ends than at their upstream ends. That solution makes it possible to guarantee that clearance exists at least between the downstream portions of the blade tips and the casing.
Nevertheless, it requires the surface area of the blades to be reduced and thus reduces the work they do on the fluid, thereby reducing the efficiency of the rotor wheel.
The object of the invention is thus to propose an arrangement for the casing and/or the blades that enables clearance between the blades and the casing to be minimized, that limits as much as possible contacts and friction between the blades and the casing, and that conserves maximum effectiveness for the blades.
This object is achieved by an assembly comprising a turbine engine casing and a bladed rotor wheel arranged inside said casing, the casing presenting an inside wall including a circumferential strip of abradable material, and wherein, in register with the tips of the blades, the casing presents upstream, the strip of abradable material, and downstream a circumferential groove, the strip of abradable material being defined downstream by the circumferential groove, and the downstream end of the circumferential groove being arranged axially in register with or downstream from the trailing edges of the blades.
The above-defined casing and rotor wheel assembly that includes, in register with the tips of the blades, an upstream strip of abradable material and a downstream circumferential groove, presents the following advantages.
The strip of abradable material is placed in register with the tips of the blades, over their upstream portions. Specifically, it is over the upstream portions of the tips of the blades that it is the most useful for clearance between the tips of the blades and the casing to be reduced.
Consequently, it is at the upstream portions of the tips of the blades that the use of a strip of abradable material is the most justified. In this region, the strip makes it possible to obtain minimum clearance between the tips of the blades and the casing.
Conversely, at the downstream portions of the tips of the blades, the existence of clearance between the tips of the blades and the casing is of smaller importance. Advantageously, in accordance with the invention, preference is given in this region to avoiding collisions between the tips of the blades and the casing.
For this purpose, in the invention, the casing has a groove that is arranged immediately downstream from the strip of abradable material. The bottom of the groove is thus hollow compared with the strip of abradable material. In other words, the groove presents a radius that is greater than the radius of the strip of abradable material (and more precisely than its inside surface).
This difference in radius means that blades presenting a radius that is substantially constant from their leading edges to their trailing edges can have tips with upstream portions that are very close to the strip of abradable material so that they act in a known manner to wear down the strip while the turbine engine is in use, and downstream portions that come into contact little or not at all with the surfaces of the groove and thus of the casing.
For optimized aerodynamic efficiency of the rotor wheel, the downstream end of the circumferential groove may be situated in register or substantially in register with the downstream ends of the blade tips.
In a variant, in order to avoid any impact between the blades and the casing, it is also possible to provide for the downstream end of the circumferential groove to be arranged axially downstream from the trailing edges of the blades.
The downstream end of the circumferential groove is then preferably located at an axial distance from the trailing edges of the blades that lies in the range 5% to 20% of the axial chord of the blades as measured at the tips of the blades. This distance enables the circumferential groove to present the tips of the blades with sufficient range for movement relative to their nominal position.
By means of the invention, the casing presents an optimized contact surface and advantageously includes a strip of abradable material with minimum axial extent, thereby making it possible to minimize contact and friction between the blades and the casing.
The following various improvements may advantageously be provided singly or in combination:
The invention also provides an axial flow compressor for a turbine engine including a casing or the assembly (casing plus rotor wheel) as defined above.
Finally, the invention provides a turbine engine having at least one casing as defined above.
The invention can be well understood and its advantages appear better on reading the following detailed description of embodiments given as non-limiting examples. The description refers to the accompanying drawings, in which:
The casing 12 presents an inside wall 20 defining a gas flow passage. This inside wall forms a surface of revolution that is generally substantially conical in shape, and in the present example that is cylindrical where it is axially in register with the rotor wheel 14.
The arrangement of the blades 18 and of the inside wall 20 of the casing 12 of the invention, is shown for various embodiments in
In the various figures, elements that are identical or similar are given the same numerical references. In addition, the various casings shown respectively in
In each of
Each of the blades 18 has a leading edge 18A, a trailing edge 18B, and a tip 19.
Axially in register with the rotor wheel 14, the radially inner portion of the casing 12 is constituted mainly by two parts: a substantially cylindrical sleeve 22 made of metal or metal alloy (titanium, aluminum, steel, etc. . . . alloy) and a strip 24 of abradable material, that is different from the material of the sleeve 22, e.g. that is made of an Al—Si based alloy.
Upstream and downstream from the blades 18, the sleeve 22 presents a radially inside surface 23 that is substantially cylindrical. The radius R of this surface is slightly greater than the maximum radius of the rotor wheel 14, measured at the tips of the blades 18. The sleeve 22 has no internal channel or passage for conveying a flow of gas past the rotor wheel 14.
In register with or facing the ends of the blades 18, the sleeve 22 includes a housing 26. This housing is in the form of a circular circumferential groove presenting a surface of revolution around the axis A, being hollowed out in the sleeve 22. This housing 26 presents a bottom surface 27 that is generally substantially cylindrical in shape.
The strip 24, which is likewise in the form of a sleeve, is arranged in the housing 26 and occupies its upstream portion.
Consequently, facing the tips of the blades 18, the casing presents upstream the strip 24 of abradable material, and downstream a circumferential groove 30, which is merely the downstream portion of the housing 26.
The strip 24 presents a radially inside surface 25. The thickness (in a radial direction) of the sleeve 24 is determined in such a manner that when the sleeve 24 is arranged in the housing 26, the inside surface 23 of the sleeve 22 and the inside surface 25 of the strip 24 are continuous one to the other, presenting the same radius R (
The upstream end of the surface 25 of the strip 24 is arranged axially substantially in register with the leading edges 18A of the blades 18, or possibly a little upstream therefrom.
It should be observed that in the context of the invention, the surface 25 of the strip 24 may present a discontinuity (of position and/or of tangent) relative to the surface 23. For example, the strip 24 may present an inside radius that is slightly less than or slightly greater than the radius R of the surface 23 of the sleeve 22.
The downstream end of the strip 24 is situated about halfway along the axis A between the leading edge 18A and the trailing edge 18B of the blade 18. In general, it is preferable for the strip 24 made of abradable material to cover at least 30% of the axial extent of the blades. Furthermore, there is little point in occupying more than 70% of the axial extent of the blades.
Immediately downstream from the strip 24 there is the groove 30. The groove is defined upstream by the strip 24, and at its bottom and on its downstream side by the sleeve 22.
In general terms, from upstream to downstream, the groove 30 presents three successive portions: an upstream portion 32 defined by the strip 24, a bottom 34, and a downstream portion 36.
The upstream portion is formed by the downstream surface of the strip 24. Conversely, the bottom 34 and the downstream portion 36 are not made of abradable material.
They are formed directly in the sleeve 22.
In the embodiments of
The bottom surface 34 is a portion of the bottom surface of the housing 26. In the embodiments of
Finally, like the surface 32, the downstream surface 36 of the groove 30 may be arranged in a plane that is transverse to the axis A of the casing 12 (embodiment shown in
The downstream end of the surface 36 of the groove 30 is arranged axially substantially in register with the trailing edges 18B of the blades 18, or indeed a little downstream therefrom.
The groove 30 thus presents an axial section that is concave.
The embodiments of
In addition, in these two embodiments, the axial extent of the bottom surface 34 is smaller than in the first embodiment, and conversely the axial extent of the downstream surface 36 is greater. In these embodiments, the surface 34 terminates upstream from the trailing edges of the blades 18 and not in register therewith. The downstream surface 36 of the groove 30 thus extends from the downstream end of the bottom surface 34 upstream from the trailing edges of the blades 18 axially as far as the trailing edges or downstream therefrom.
Furthermore, in the embodiments of
In these various embodiments, the downstream end of the circumferential groove is thus located at an axial distance along the axis A and measured from the trailing edges 18B of the blades that lies in the range 5% to 20% of the axial chord of the blades as measured at the blade tips. The value of the “axial chord” of the blades corresponds to the distance along the axis A as shown in the figures between the leading edges 18A and the trailing edges 18B of the blades.
The embodiment of
Unlike the embodiments of
The shoulder 38 serves to hold the strip 34 in position, in particular in the axial direction.
The surfaces 34 and 36 taken together constitute a single surface 40.
This surface 40 presents an axial section that is locally strictly concave at all points from upstream to downstream, and consequently this surface section does not have any straight line segment. Its shape may be arbitrary, and should ideally be determined by experiment or by calculation so as to ensure that, in all operating modes of the turbine engine, the surfaces 34 and 36 (and thus the surface 40) remain without contact with the blades 18.
Finally,
Instead of this upstream surface being perpendicular to the axis A of the casing, the upstream surface 32 is frustoconical about the axis A. Relative to this axis it forms an angle at the apex that is equal to 45°.
In order to avoid pointlessly overdimensioning the strip of abradable material 24, the angle is preferably not less than 45°.
In the various embodiments described, the tips 19 of the blades 18 are situated radially strictly inside the wall 20. In addition, the length of the blades (measured in the radial direction) is constant.
Neither of those two characteristics is essential for the invention.
In the context of the invention, the blades may have a length (measured in the radial direction) that varies as a function of position along the axis of the rotor wheel. The blades may thus present a total radius (overall radius for the blades when mounted on the rotor wheel) that varies in the axial direction.
In the context of the invention, the blades may also present a total radius that might possibly be greater than the radius of the inside surface of the casing immediately upstream or downstream from the rotor wheel, or that is at least locally greater than that radius (i.e. over only a certain axial range along the axis of the rotor wheel). The tips of the blades then penetrate at least locally into the wall of the casing.
The blades may also present non-uniform radial clearance relative to the casing, as shown in particular in the above-described embodiment.
Consequently, the total radius of the blades may be less than or greater than the inside radius (R) of the surface of the casing immediately upstream or downstream from the blades. The total radius of the blades may also vary between these two configurations as a function of position along the axis of the rotor wheel.
Number | Date | Country | Kind |
---|---|---|---|
12 58959 | Sep 2012 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2013/052172 | 9/19/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/049239 | 4/3/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4534698 | Tomich | Aug 1985 | A |
5137419 | Waterman | Aug 1992 | A |
5474417 | Privett et al. | Dec 1995 | A |
5607284 | Byrne | Mar 1997 | A |
6227794 | Wojtyczka | May 2001 | B1 |
6382905 | Czachor | May 2002 | B1 |
6536773 | Datta | Mar 2003 | B2 |
6830428 | Le Biez | Dec 2004 | B2 |
8177494 | Ward | May 2012 | B2 |
20030035715 | Torrance | Feb 2003 | A1 |
20070147989 | Collins | Jun 2007 | A1 |
20120163967 | Krautheim | Jun 2012 | A1 |
20120224949 | Harper | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
1933243 | Mar 2007 | CN |
0 719 908 | Jul 1996 | EP |
1 286 022 | Feb 2003 | EP |
1 344 895 | Sep 2003 | EP |
2 947 016 | Dec 2010 | FR |
2 361 747 | Oct 2001 | GB |
2361747 | Oct 2001 | GB |
H08-35402 | Feb 1996 | JP |
2009-174429 | Aug 2009 | JP |
WO 2012025357 | Mar 2012 | WO |
Entry |
---|
Search Report dated Dec. 9, 2013 in corresponding International Application No. PCT/FR2013/042172 filed on Sep. 19, 2013 (10 pages). |
Notice of Reasons for Rejection and English language translation issued in related Japanese App. No. 2015-533666, dated May 30, 2017 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20150226078 A1 | Aug 2015 | US |