The invention relates to gas turbine engines, and more particularly to the retention of seals within gas turbine engines.
Gas turbine engines operate according to a continuous-flow, Brayton cycle. A compressor section pressurizes an ambient air stream, fuel is added and the mixture is burned in a central combustor section. The combustion products expand through a turbine section where bladed rotors convert thermal energy from the combustion products into mechanical energy for rotating one or more centrally mounted shafts. The shafts, in turn, drive the forward compressor section, thus continuing the cycle. Gas turbine engines are compact and powerful power plants, making them suitable for powering aircraft, heavy equipment, ships and electrical power generators. In power generating applications, the combustion products can also drive a separate power turbine attached to an electrical generator.
Fairings are used with vane assemblies and interface with the main gas flow path of the gas turbine engine. Fairings typically require stiffening features at the forward and aft ends thereof to maintain the circular shape and stiffness of the fairing. Seals are also used in many locations within the gas turbine engine to regulate air flow to various portions of the engine. Typically, seals require components such as seal lands and seal carriers for retention. These components add weight to, and therefore, decrease the efficiency of the gas turbine engine.
An assembly for a gas turbine engine includes a component, a fairing, and a seal. The fairing is disposed adjacent to the component and defines a primary gas flow path. The fairing has a rib that is located outside of the primary flow path and extends from an outer surface of the fairing. The seal is disposed between the rib and the component.
An assembly for a gas turbine engine includes a casing, a fairing, and a seal. The fairing is mounted within the casing and has a rib extending from an outer surface adjacent at least one of an aft end and a forward end of the fairing. The seal is disposed between the rib and the casing. The seal regulates a secondary gas flow to pass between the casing and the fairing.
An assembly for a gas turbine engine includes a casing, a fairing, and a W seal. The fairing is disposed within the casing and has a rib with a main body extending generally radially from an outer surface thereof. The rib has a lip extending from the main body. The W seal is mounted between the rib and the casing. The main body retains the W seal in an axial direction and the lip retains the W seal in a radial direction.
The application discloses the use of fairing ribs for both stiffening the fairing and for mounting seals within a gas turbine engine. Using the ribs for this dual purpose reduces the overall part count of the gas turbine engine and simplifies the design of the fairing for both manufacture and assembly. As a result of the arrangement described herein, the gas turbine engine is lighter and more cost effective to manufacture.
An exemplary industrial gas turbine engine 10 is circumferentially disposed about a central, longitudinal axis or axial engine centerline axis 12 as illustrated in
As is well known in the art of gas turbines, incoming ambient air 30 becomes pressurized air 32 in the compressors 16 and 18. Fuel mixes with the pressurized air 32 in the combustor section 20, where it is burned to produce combustion gases 34 that expand as they flow through turbine sections 22, 24 and power turbine 26. Turbine sections 22 and 24 drive high and low pressure rotor shafts 36 and 38 respectively, which rotate in response to the combustion products and thus the attached compressor sections 18, 16. Free turbine section 26 may, for example, drive an electrical generator, pump, or gearbox (not shown).
It is understood that
Frame 42 comprises a stator component of gas turbine engine 10 (
As illustrated in
Fairing 48 is adapted to be disposed within frame 42 between outer radial casing 54 and inner radial casing 56. Outer radial platform 60 of fairing 48 has a generally conical shape. Inner radial platform 62 has a generally conical shape. Inner radial platform 62 is spaced from outer radial platform 60 by strut liners 64. Strut liners 64 are adapted to be disposed around struts 58 of frame 42 when fairing 48 is assembled on frame 42. As discussed previously, outer radial platform 60, inner radial platform 62, and strut liners 64, form main gas flow path 51 for a portion of gas turbine engine 10 when assembled.
Outer radial casing 54 abuts and is affixed to a second outer radial casing 49 of another module of gas turbine engine 10 (
As shown in
As shown in
Inner aft rib 66B, seal 68, and seal support 67 act to separate cavities 70A and 70B within gas turbine engine 10 to limit the passage of a secondary gas flow therebetween. In particular, first cavity 70A is formed between seal 68, inner aft rib 66D, inner radial platform 62, seal support 67, and inner radial casing 56. Second cavity 70B is formed aft of seal 68, inner aft rib 66D and seal support 67.
Ribs 66A-66D act to maintain the shape of the fairing 48 and provide stiffness for the fairing 48. Additionally, inner aft rib 66D acts to mount seal 68 to seal against secondary gas flow between cavities 70A and 70B. The arrangement described reduces the overall part count of the gas turbine engine 10 and simplifies the design of fairing 48.
Main body 175 extends generally radially from inner radial platform 162 of fairing 148. Groove 174 is formed in aft surface of main body 175 to create a more effective sealing interface between inner aft rib 166D and seal 168. Lip 176A extends generally axially from main body 175 and is positioned inward of seal 168. In other embodiments, groove 174 may not exist and the seal 168 is contacted against the surface of the inner aft rib 166D.
Seal 168 is disposed between and is mounted to both inner aft rib 166D and seal support 167 within cavity 173. Seal 168 contacts both groove 174 as well as a generally radially extending portion of seal support 167. Main body 175 retains seal 168 in the axial direction and lip 176A retains seal 168 in the radial direction should seal 168 move in the radially inward direction.
In the embodiment shown in
Outer forward rib 266A extends generally radially from outer radial platform 260 of fairing 248. Groove 274 can be formed in forward interfacing surface of outer forward rib 266A to create a more effective sealing interface between outer forward rib 266A and seal 268.
Seal 268 is disposed between and is mounted to both outer forward rib 266A and seal carrier 267. Seal 268 contacts both groove 274 as well as pocket 269 of seal carrier 267 to create a seal. Outer forward rib 266A retains seal 268 in the axial direction and pocket 269 is adapted to retain seal 268 in both the radial direction as well as the axial direction. In
In the embodiment shown in
The following are non-exclusive descriptions of possible embodiments of the present invention.
An assembly for a gas turbine engine includes a component, a fairing, and a seal. The fairing is disposed adjacent to the component and defines a primary gas flow path. The fairing has a rib that is located outside of the primary flow path and extends from an outer surface of the fairing. The seal is disposed between the rib and the component.
The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
the rib has a groove that receives the seal;
the rib extends generally radially from the fairing and retains the seal in the axial direction;
the rib has a lip extending therefrom that retains the seal in the radial direction;
the seal comprises a finger seal;
the seal comprises a W seal;
the component comprises a casing of a turbine frame;
the casing comprises one of a seal support or a seal carrier; and
the seal and the rib are disposed adjacent at least one of an aft end and a forward end of the fairing.
An assembly for a gas turbine engine includes a casing, a fairing, and a seal. The fairing is mounted within the casing and has a rib extending from an outer surface adjacent at least one of an aft end and a forward end of the fairing. The seal is disposed between the rib and the casing. The seal regulates a secondary gas flow to pass between the casing and the fairing.
The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
the casing comprises a portion of a turbine frame;
the rib has a groove that receives the seal;
the rib extends generally radially from the fairing and retains the seal in the axial direction;
the rib has a lip extending therefrom that retains the seal in the radial direction;
the seal comprises a finger seal; and
the seal comprises a W seal.
An assembly for a gas turbine engine includes a casing, a fairing, and a W seal. The fairing is disposed within the casing and has a rib with a main body extending generally radially from an outer surface thereof. The rib has a lip extending from the main body. The W seal is mounted between the rib and the casing, and the main body retains the W seal in an axial direction and the lip retains the W seal in a radial direction.
The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
the rib has a groove that receives the W seal;
the lip extends axially from the main body; and
the casing comprises one of a seal support or a seal carrier.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.