The present invention relates to a turbine engine compressor, in particular a high-pressure compressor of an aeroplane turboprop or turbofan.
In a manner known per se, a turbine engine compressor comprises several compressor stages, each having an annular row of mobile vanes mounted on a rotor shaft and an annular row of variable-pitch stator vanes mounted at their radially external ends on a substantially cylindrical external casing.
Adjustment of the angular setting of the stator vanes in a turbine engine is intended to optimise the output of said turbine engine and reduce its fuel consumption during the different phases of flight.
The variable-pitch stator vanes each comprise at their radially external end a radial pivot, which is centred and rotationally guided in an orifice in the external casing. Each vane pivot is connected by a crank-arm to a control ring that surrounds the external casing of the compressor and is rotationally movable around the longitudinal axis of the compressor by actuating means in order to transmit to the vanes a rotational movement around the axes of their pivots.
Each crank-arm is fixed to the vane pivot and comprises a cylindrical pin inserted in a cylindrical hole in the control ring.
During rotation of the control ring around its axis, the latter causes the crank-arms and the vanes to pivot around the axis of the vane pivot. The total angular range of rotation of the crank-arms is conventionally on the order of 50 to 90°. The ring is also axially movable so as to accompany the path of the pins. All the vanes are in this case situated in the same angular position for a given angular position of the control ring.
Now, depending on the speed of the turbine engine, it is necessary to be able to adapt the pitch of the vanes, particularly as a function of their azimuthal position, i.e. the circumferential position of the stator vane in the corresponding stage. The pitch angles allowing maximisation of the turbine engine output may therefore differ as a function of the azimuthal positions of the stator vanes in a given stage.
Indeed, the gas flow in the stream passing through the high-pressure compressor is not uniform over its entire circumference, wherein said flow may comprise pockets causing losses of performance. Furthermore, when the turbine engine is operating at high speed, high forces and torques are applied to the vanes, which tends to slightly distort the control ring.
The aim of the invention is in particular to provide a simple, effective and economical solution to this problem, while avoiding any hyperstatism of the system, which requires having crank-arms that are all substantially of the same length.
To this end, it proposes a turbine engine compressor, in particular of an aeroplane turboprop or turbofan, comprising a stator featuring an annular casing and at least one annular row of variable-pitch vanes, wherein each vane comprises a radially external end having a pivot mounted in an orifice in the casing and connected by a linking member to an control ring capable of rotating about an axis of the casing, wherein said linking member comprises a first end fixed to the pivot of the vane and a second end having a pin inserted in a hole in the control ring, serving for insertion of the pins of the linking members, is oblong in shape and extends in the circumferential direction in order to allow movement of the pin in said oblong hole, during rotation of the control ring.
Thus, depending on the shape of the hole, it is possible to adjust the pitch angle of each vane, individually or by groups of vanes, while retaining linking members (crank-arms for example) having the same length. This adjustment allows adaptation to the heterogeneity of the gas flow and correction of any deformations at high engine speed.
The oblong hole extending in the circumferential direction does not necessary extend solely in the latter direction, i.e. along a radial plane perpendicular to the axis of the control ring. Indeed, the oblong hole may extend both in the axial direction and in the circumferential direction.
According to one characteristic of the invention, the pins are cylindrical.
Furthermore, at least one of the holes in the control ring, serving for insertion of the pins of the linking members, may be shaped so as to inhibit movement of the pin in said hole.
In this case, the control ring may comprise at least one cylindrical hole in which a cylindrical pin of a linking member is inserted, wherein the diameters of the pin and of the cylindrical hole are substantially identical, in addition to one oblong hole extending circumferentially in which another cylindrical pin of another linking member is inserted.
According to a first embodiment of the invention, said oblong hole in the control ring comprises a first end located on the side of a first lateral edge of the control ring and a second end located on the side of a second lateral edge of the control ring, wherein both ends are connected by a curved joining area featuring an inflection point.
According to a second embodiment of the invention, said oblong hole in the control ring extends solely in the circumferential direction.
According to a third embodiment of the invention, said oblong hole in the control ring extends obliquely in relation to the axial direction and in relation to the circumferential direction.
According to a fourth embodiment of the invention, said oblong hole in the control ring forms an arc shape.
According to a fifth embodiment of the invention, said oblong hole in the control ring comprises a first end extending solely circumferentially and located on the side of a first lateral edge of the control ring and a second end extending solely circumferentially located on the side of the other lateral edge of the control ring, wherein said ends are connected by a joining area extending obliquely in relation to the circumferential direction and in relation to the axial direction.
The invention furthermore relates to a turbine engine, such as for example an aeroplane turboprop or a turbofan, comprising at least one compressor of the aforementioned type.
The invention will be better understood and other details, characteristics and advantages thereof will become apparent in reading the following description, given by way of a non-restrictive example with reference to the appended drawings in which:
Reference will be made initially to
Each disc is arranged downstream from an annular row of variable-pitch stator vanes 26. Each stator vane comprises coaxial cylindrical pivots 28, 30 at its radially internal and external ends. The internal cylindrical pivot 28 extends inwards from the stator vane 26 and is centred and rotationally guided in a cylindrical recess of an annular element of the stator and the external cylindrical pivot 30 extends radially outwards and is centred and rotationally guided in a cylindrical shaft 32 of a substantially cylindrical external casing 34 of the high-pressure compressor 10.
Adjustment of the pitch angle of the stator vanes 26 of a stage is performed by means of crank-arms 36, which are rotated by a control ring 38 pivotably mounted in relation to the casing 34 around the axis 12. The total displacement of the control ring is for example included between 5 and 20°. A hydraulic actuator 40 allows simultaneous rotational movement of several control rings 38. The ring 38 is, for example, formed of two parts 39 assembled with one another by means of saddles (not illustrated) fixed to the ends of said parts 39.
The crank-arms 36 are fixed at one end to the radial pivots 30 of the variable-pitch vanes 26, wherein said pivots 30 are rotationally guided in bushings 42 installed in the shafts 32 of the casing 34 (
As can be seen more clearly in
During rotation of the control ring 38 around its axis 12, the latter causes the crank-arms 36 and the vanes 26 to pivot around the axis of the pivots 28, 30 of the vanes 26. All the vanes 26 are in this case situated in the same angular position for a given angular position of the control ring 38, wherein the crank-arms 36 are all of the same length.
Now, as stated above, depending on the speed of the turbine engine, it is necessary to be able to adapt the pitch of the vanes 26, particularly as a function of their azimuthal position, i.e. the circumferential position of the stator vane 26 in the corresponding stage.
The invention fulfills this requirement by proposing a control ring 38 allowing adjustment of the pitch angle of the vanes 26, individually or by group of vanes 26, depending on the azimuthal positions of the vanes 26 in question or the groups of vanes 26 in question.
In particular, the oblong holes 58 each comprise a first end 60 located on the side of a first lateral edge or upstream edge 62 of the control ring 38 and a second end 64 located on the side of a second lateral edge or downstream edge 66 of the control ring 38, wherein both ends 60, 64 are connected by a curved joining area 68 featuring an inflection point.
Hence, during operation, the pitch angle of the vanes 26 does not vary in the same way, depending on the angular position of the control ring 38, for the vanes 26 associated with the cylindrical holes 52 or for the vanes 26 associated with the oblong holes 58. Depending on the shape of the holes 58, the variation in the pitch angle can therefore be adjusted as a function of the angular position of the control ring 38 (also known hereafter as pitch law) for each of the vanes 26.
In this case, all the oblong holes 58 are of substantially the same shape, with the other holes 52 being cylindrical. A control ring 38 of this type therefore features two groups of vanes 26, located in different azimuthal areas of the turbine engine, obeying different pitch laws from one group to another.
It will be noted that the centre of the holes 52 is aligned circumferentially with one of the ends of the oblong holes 58.
It will be noticed that these pitch laws are different from one another, particularly in the case of the angles of the control ring 38 corresponding to an opening of the associated vanes 26. The angle αvane corresponds to the angle of the crank-arms 36 in relation to the axis 12 of the turbine engine, plotting a straight line passing through the centre of the pivot 30 of the vane 26 and the centre of the pin 48 which is inserted in the ring 38. By definition, the open position corresponds to an angle αvane that is negative in relation to the axis 12 of the turbine engine, considering that the positive direction is the trigonometric direction and the closed position corresponds to an angle αvane that is positive in relation to the axis 12 of the turbine engine. The angle αvane=0 corresponds to the position in which the crank-arms 36 are aligned with the axis 12 of the turbine engine.
If one seeks to change the pitch laws for the angles corresponding to closure of the vanes 26, oblong holes 58 may be used, the general shapes of which are the symmetrical forms/axis of the turbine engine of those described above. In this case however, the centre of the holes 52 should be aligned with the other end of the oblong holes 58.
Depending on the selected shape of the hole 52, 58 (cylindrical, oblique straight, arc shape, etc. . . . ) it is thus possible to adapt the pitch law of the associated vanes 26 to suit needs.
Naturally, the control ring 38 may comprise at least two types of oblong hole 58 among those described above. Other forms of oblong hole 58 may also be used, provided that these oblong holes 58 extend particularly in the circumferential direction C.
Number | Date | Country | Kind |
---|---|---|---|
13 62972 | Dec 2013 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2014/053163 | 12/4/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/092197 | 6/25/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3066488 | Mock | Dec 1962 | A |
3314595 | Burge | Apr 1967 | A |
3861822 | Wanger | Jan 1975 | A |
4737071 | Horn, Jr. | Apr 1988 | A |
5993152 | Schilling | Nov 1999 | A |
7413401 | Szucs | Aug 2008 | B2 |
7802964 | Bouru | Sep 2010 | B2 |
8297918 | Bhatnagar | Oct 2012 | B2 |
20110176913 | Wassynger et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
1 672 180 | Jun 2006 | EP |
1 808 579 | Jul 2007 | EP |
2 204 549 | Jul 2010 | EP |
1 592 922 | May 1970 | FR |
Number | Date | Country | |
---|---|---|---|
20160348530 A1 | Dec 2016 | US |