This invention relates generally to turbine engines and, more particularly to fuel nozzles and methods of assembling the same.
Turbine engines typically include a plurality of fuel nozzles for supplying fuel to the engine. Improving the life cycle of fuel nozzles installed within the turbine engine may extend the longevity of the turbine engine. Known fuel nozzles include a delivery system and a support system. Known fuel nozzles are generally expensive to fabricate and/or repair because known fuel nozzle designs include a complex assembly of more than thirty components. The delivery system delivers fuel to the turbine engine and is supported, and is shielded within the turbine engine, by the support system. More specifically, known support systems surround the delivery system, and as such are subjected to higher temperatures and have higher operating temperatures than delivery systems which are cooled by fluid flowing through the fuel nozzle.
Over time, continued exposure to high temperatures during turbine engine operations may induce thermal stresses to the fuel nozzles which may damage the fuel nozzle and/or adversely effect the operation of the fuel nozzle. For example, thermal stresses may cause fuel flow reductions and/or lead to excessive fuel maldistribution within the turbine engine. Furthermore, over time, continued operation with damaged fuel nozzles may result in decreased turbine efficiency, turbine component distress, and/or reduced engine exhaust gas temperature margin.
In one aspect, a method for assembling a fuel nozzle for a turbine engine is provided. The method includes coupling a one-piece housing to a one piece venturi. The housing includes an annular fuel nozzle tip and the venturi defines a fuel chamber within the fuel nozzle tip. The method further includes coupling a one-piece swirler to the venturi such that the swirler extends radially inward from the venturi.
In another aspect, a fuel nozzle for a turbine engine is provided. The fuel nozzle includes a one-piece housing coupled to a one-piece venturi. The housing includes an annular fuel nozzle tip and a plurality of openings configured to discharge air radially outward from the fuel nozzle tip. The venturi is coupled to the housing and defines a fuel chamber within the fuel nozzle tip. A one-piece swirler is coupled to and extends radially inward from the venturi. The swirler facilitates enhancing mixing of the fuel and air within the fuel chamber.
In a further aspect, a turbine engine is provided. The turbine engine includes a combustor having a casing and a fuel nozzle configured to discharge fuel into the combustor. The fuel nozzle includes a one-piece housing coupled to a one-piece venturi. The housing includes an annular fuel nozzle tip and a plurality of openings configured to discharge air radially outward from the fuel nozzle tip. The venturi is coupled to the housing and defines a fuel chamber within the fuel nozzle tip. A one-piece swirler is coupled to and extends radially inward from the venturi. The swirler facilitates enhancing mixing of the fuel and air within the combustor.
In operation, air flows through low pressure compressor 12 supplying compressed air from low pressure compressor 12 to high pressure compressor 14. The highly compressed air is delivered to combustor 16. Airflow from combustor 16 is channeled through a turbine nozzle to drive turbines 18 and 20, prior to exiting gas turbine engine 10 through an exhaust nozzle 24. As is known in the art, gas turbine engines further include fuel nozzles (not shown) which supply fuel to the combustor 16.
Fuel nozzle tip 112 also includes an aft heat shield 144 and a forward heat shield 148. Aft heat shield 144 is coupled to housing 124 and venturi 128. Forward heat shield 148 is coupled to venturi 128 and stem 108. The coupling between forward heat shield 148 and stem 108 provides additional support for fuel nozzle tip 112. Aft heat shield 144 and forward heat shield 148 are also coupled together to define a cavity therebetween that partially encloses a main fuel circuit 152. Main fuel circuit 152 is coupled to forward heat shield 148 within the cavity.
Mounting flange 104 facilitates coupling fuel nozzle 100 to the casing (not shown) of a turbine engine combustor, such as combustor 16 (shown in
In the exemplary embodiment, fuel nozzle tip 112 extends from stem 108 such that main fuel passageway 116 and pilot fuel passageway 120 are coupled in flow communication with fuel nozzle tip 112. Specifically, main fuel passageway 116 is coupled in flow communication to main fuel circuit 152 defined within fuel nozzle tip 112. Likewise, pilot fuel passageway 120 is coupled in flow communication with injector 140 that is positioned radially inward from swirler 136 and within fuel nozzle tip 112.
During operation of the turbine engine, initially, pilot fuel is supplied through pilot fuel passageway 120 during pre-determined engine operation conditions, such as during startup and idle operations. The pilot fuel is discharged from injector 140 through swirler 136. Swirler 136 enhances the mixing of air and fuel within fuel chamber 132.
When additional power is demanded, primary fuel is supplied through main fuel passageway 116 and is circulated through main fuel circuit 152. Primary fuel circulating through main fuel circuit 152, is substantially insulated by aft heat shield 144 and forward heat shield 148. The insulation barrier facilitates shielding the primary fuel channeled through main fuel circuit 152 from the other components of fuel nozzle tip 112, which may have become heated during operation of the engine. Separating the primary fuel from the heated fuel nozzle tip 112 facilitates preventing fuel coking within fuel nozzle 100. While circulating through main fuel circuit 152, the primary fuel is released into fuel chamber 132.
The release of primary fuel into fuel chamber 132 creates a desired flame within a combustion chamber of the combustor to power the turbine engine. This process in-turn creates heat throughout fuel nozzle 100. To facilitate cooling fuel nozzle tip 112, openings 126 in housing 124 allow air to discharge radially outward through fuel nozzle tip 112.
The above-described fuel nozzle for a turbine engine comprises fewer components and joints than known fuel nozzles. Specifically, the above described fuel nozzle requires fewer components because of the use of a one-piece housing, a one-piece venturi, and a one-piece swirler. As a result, the described fuel nozzle provides a lighter, less costly alternative to known fuel nozzles. Moreover, the described fuel nozzle provides fewer opportunities for failure and is more easily repairable compared to known fuel nozzles.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural said elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
Although the methods and systems described herein are described in the context of supplying fuel to a turbine engine, it is understood that the fuel nozzle methods and systems described herein are not limited to turbine engines. Likewise, the fuel nozzle components illustrated are not limited to the specific embodiments described herein, but rather, components of the fuel nozzle can be utilized independently and separately from other components described herein.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3899884 | Ekstedt | Aug 1975 | A |
4198815 | Bobo et al. | Apr 1980 | A |
4854127 | Vinson et al. | Aug 1989 | A |
5596873 | Joshi et al. | Jan 1997 | A |
5613363 | Joshi et al. | Mar 1997 | A |
6286302 | Farmer et al. | Sep 2001 | B1 |
6327860 | Critchley | Dec 2001 | B1 |
6481209 | Johnson et al. | Nov 2002 | B1 |
6497103 | Johnson et al. | Dec 2002 | B2 |
6718770 | Laing et al. | Apr 2004 | B2 |
6932093 | Ogden et al. | Aug 2005 | B2 |
7013649 | Monty | Mar 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20070119177 A1 | May 2007 | US |