The present disclosure relates generally to gas turbine engines and more specifically to gas turbine engines with centrifugal compression.
Gas turbine engines are used to power aircraft, watercraft, power generators, and the like. Gas turbine engines typically include a compressor, a combustor, and a turbine. The compressor compresses air drawn into the engine and delivers high pressure air to the combustor. In the combustor, fuel is mixed with the high pressure air and is ignited. Products of the combustion reaction in the combustor are directed into the turbine where work is extracted to drive the compressor and, sometimes, an output shaft. Left-over products of the combustion are exhausted out of the turbine and may provide thrust in some applications.
Some gas turbine engines include compressors with one or more stages of axial and/or centrifugal compression. Cooling or avoiding heat generation in compressors may improve component lifetime and performance. Some compressors may be cooled using bleed air that is subsequently discarded, sacrificing both the temperature and pressure of that cooling air.
The present disclosure may comprise one or more of the following features and combinations thereof.
A turbine engine may include a centrifugal compressor, a combustor, a turbine, and a manifold. The combustor may be fluidly coupled to the centrifugal compressor to receive the majority of compressed gases discharged from the compressor. The turbine may be fluidly coupled to the combustor to receive the hot, high pressure combustion products from the combustor. The turbine may be configured to extract mechanical work from the hot, high pressure combustion products. The manifold may be mounted to the compressor and shaped to define a number of circumferentially spaced apart channels.
In some embodiments, the centrifugal compressor may include an impeller and an impeller backing plate. The impeller may be mounted for rotation about an axis and formed to have impeller blades and an impeller disk. The impeller blades may extend from a forward side of the impeller disk. The impeller backing plate may be arranged along an aft side of the impeller disk to define a back cavity of the centrifugal compressor therebetween.
In some embodiments, the impeller backing plate may be formed to include a number of bleed holes. The bleed holes may be arranged radially inwardly from an outlet tip of the impeller blades so as to allow for compressed gases discharged from the outlet tip of the impeller blades to move over the outlet tip and radially along a portion of the impeller disk on the aft side of the impeller disk before moving through the impeller backing plate,
In some embodiments, the combustor may receive the majority of compressed gases discharged from the outlet tip of the impeller blades as compressor discharge air. The combustor may be configured to mix fuel with the compressor discharge air and ignite the fuel so as to create hot, high pressure combustion products.
In some embodiments, the turbine includes a rotor, at least one set of turbine blades, and a seal. The rotor may have a shaft mounted for rotation about the axis. The set of turbine blades may be coupled to the shaft for rotation therewith. The seal may be formed from forward and aft sealing elements. The forward and aft sealing elements may engage the impeller backing plate of the centrifugal compressor to fluidly separate the back cavity of the compressor from the turbine.
In some embodiments, the forward and aft sealing elements of the seal may form a seal cavity there between. The seal cavity may be in fluid communication with the combustor to receive compressor discharge air from the combustor. In some embodiments, the seal cavity may be pressurized by the compressor discharge air.
In some embodiments, the manifold may be mounted to the impeller backing plate to form the number of circumferentially spaced apart channels. The number of circumferentially spaced apart channels that receive compressed gases moving through the number of bleed holes may carry the compressed gases from the centrifugal compressor to the turbine bypassing the combustor.
In some embodiments, the forward sealing element of the seal included in the turbine may be configured to leak compressor discharge air to the back cavity formed between the impeller disk of the compressor and the impeller backing plate. The aft sealing element of the seal included in the turbine may be configured to leak compressor discharge air to turbine. In some embodiments, the forward and aft sealing elements may be positioned at the same radial location relative to the shaft of the turbine.
In some embodiments, the impeller backing plate may be formed to include a plurality of impingement holes. The impingement holes may extend radially through the impeller backing plate and open into the seal cavity to transmit compressor discharge air from the compressor to the seal cavity. In some embodiments, the plurality of impingement holes may be circumferentially located between the number of circumferentially spaced apart channels formed by the manifold.
In some embodiments, at least one bleed hole of the number of bleed holes may be configured to provide compressed gases to at least one channel of the number of circumferentially spaced apart channels formed by the manifold. In some embodiments, at least two bleeds holes may be configured to provide compressed gases to at least one channel of the number of circumferentially spaced apart channels formed by the manifold.
In some embodiments, the number of bleed holes may be positioned at a preselected radial location relative to the axis. The preselected radial location of the bleed holes may be positioned so as to bleed an amount of compressed gases from the outlet tip of the impeller blades that decreases windage at or near the outlet tip of the impeller blades.
According to another aspect of the present disclosure, the gas turbine engine may include a centrifugal compressor, a turbine, and a manifold. The centrifugal compressor may include an impeller mounted for rotation about an axis and an impeller backing plate. The impeller may have impeller blades that extend from a forward side of an impeller disk. The impeller backing plate may be arranged along an aft side of the impeller disk to define a back cavity of the centrifugal compressor therebetween.
In some embodiments, the impeller backing plate may be formed to include a number of bleed holes. The number of bleed holes may be arranged radially inwardly from an outlet tip of the impeller blades.
In some embodiments, the turbine may include a rotor and a seal. The rotor may have a shaft mounted for rotation about the axis and a seal. The seal may be formed from forward and aft sealing elements that engage the impeller backing plate of the centrifugal compressor to fluidly separate the back cavity of the compressor from the turbine.
In some embodiments, the manifold may be mounted to the impeller backing plate. The manifold may be shaped to define a number of circumferentially spaced apart channels. The channels may receive compressed bleed gases moving through the number of bleed holes and carry the compressed bleed gases from the centrifugal compressor to the turbine bypassing other components of the gas turbine engine.
In some embodiments, the gas turbine engine may further include a combustor. The combustor may be fluidly coupled to the centrifugal compressor to receive the majority of compressed gases from the centrifugal compressor. The combustor may also be fluidly coupled to the turbine to discharge hot, high pressure combustion products to the turbine.
In some embodiments, the seal cavity may be pressurized. The seal cavity may be pressurized by the compressor discharge air.
In some embodiments, the forward sealing element of the seal may be configured to leak compressor discharge air to the back cavity formed between the impeller disk of the compressor and the impeller backing plate. The aft sealing element of the seal included in the turbine may be configured to leak compressor discharge air to the seal cavity. In some embodiments, the forward and aft sealing elements may be positioned at the same radial location relative to the shaft of the turbine.
In some embodiments, the impeller backing plate may be formed to include a plurality of impingement holes. The plurality of impingement holes may extend radially through the impeller backing plate and open into the seal cavity to transmit compressed gases moving through the number of circumferentially spaced apart channels. In some embodiments, the plurality of impingement holes may be circumferentially spaced apart between the number of circumferentially spaced apart channels formed by the manifold.
In some embodiments, at least one bleed hole of the number of bleed holes may be configured to provide compressed gases to at least one channel of the number of circumferentially spaced apart channels formed by the manifold. In some embodiments, at least two bleeds holes may be configured to provide compressed gases to at least one channel of the number of circumferentially spaced apart channels formed by the manifold.
These and other features of the present disclosure will become more apparent from the following description of the illustrative embodiments.
For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to a number of illustrative embodiments illustrated in the drawings and specific language will be used to describe the same.
An illustrative gas turbine engine 10 includes a fan 12, an axi-centrifugal compressor 14, a combustor 16 fluidly coupled to the compressor 14, and a turbine 18 fluidly coupled to the combustor 16 as shown in
The axi-centrifugal compressor 14 has axial compression stages 13 and a centrifugal compression stage 15 as shown in
In some embodiments, compressor impellers can generate high temperatures in operation. High temperatures or heat generation by the compressor impeller may be a result of increased windage at or near the compressor impeller tip. Reducing or avoiding heat generation by compressor impellers in operation may improve impeller function, efficiency, and life.
To reduce the heat generation by the compressor impeller, air may be bled from the compressor impeller, specifically at the impeller tip. The bleed air may minimize the windage generated near the compressor impeller tip on the aft side of the impeller disk, yet, due to pressure losses, the bleed air from the compressor impeller may not be useful. Therefore, the bleed air may be subsequently discarded, sacrificing both the temperature and pressure of that bleed air.
As such, the present disclosure teaches an arrangement that reduces the heat generation by the compressor impeller 22, while allowing for the bleed air to be reused in other components of the gas turbine engine 10. By reusing the bleed air, the operational efficiency of the gas turbine engine 10 may be increased while maintaining improved impeller operation and life.
To reuse the bleed air from the compressor impeller 22, the gas turbine engine 10 further includes a manifold 20 as shown in
The bleed holes 44 are arranged radially inwardly from an outlet tip 40 of the impeller blades 30 so as to allow the compressed gases discharged from the outlet tip 40 of the impeller blades 30 to move over the outlet tip 40 and radially along a portion of the impeller disk 32 on the aft side 36 before moving through the impeller backing plate 26 as shown in
In the illustrative embodiment, the bleed holes 44 are positioned at a preselected radial location R1 as shown in
The arrangement of the bleed holes 44 therefore provides a balance between reducing windage heat generated, while also providing a flow of compressed gases with a high enough pressure so as to be reused in other components of the engine 10. The channels 42 formed by the manifold 20 transport the high pressure compressed gases to the turbine 18 bled from the compressor so that the high pressure compressed gases may be reused in the turbine 18.
In other embodiments, the compressed gases bled from the outlet tip 40 may be transported to another component of the engine 10, such as turbine vanes 50 in the turbine 18. The compressed gases may be transported outside of the engine casing 51 bypassing the combustor 16 to the turbine 18. The compressed gases may be used to cool the turbine vanes 50 before being discharged into the core flow path 19.
In the illustrative embodiment, at least one bleed hole 44 is configured to provide compressed gases to at least one channel 42 formed by the manifold 20. In other embodiments, at least two bleeds holes 44 may be configured to provide compressed gases to at least one channel 42 formed by the manifold 20.
Turning again to the turbine 18, the turbine 18 includes a plurality of bladed rotating wheel assemblies 48 and a plurality of static turbine vane rings 50 that are fixed relative to the axis 11 as suggested in
Each rotating wheel assembly includes a rotor 52, at least one set of turbine blades 54, and a seal 56 as shown in
The forward sealing element 60 and the aft sealing element 62 of the turbine 18 form a seal cavity 64 therebetween. The seal cavity 64 is in fluid communication with the combustor 16 to receive compressor discharge air from the compressor 14. In the illustrative embodiment, the forward and aft sealing elements 60, 62 are positioned at the same radial location relative to the shaft 58 of the turbine 18.
The impeller backing plate 26 is also formed to include a plurality of impingement holes 46 as shown in
In the illustrative embodiment, the impingement holes 46 are circumferentially located between the number of circumferentially spaced apart channels 42 formed by the manifold 20. The compressor discharge air pressurizes the seal cavity 64 so that compressor discharge air leaks across the forward sealing element 60 and the aft sealing element 62.
In the illustrative embodiment, the forward sealing element 60 of the seal 56 is configured to leak compressor discharge air to the back cavity 38 as shown in
The aft sealing element 62 of the seal 56 is configured to leak compressor discharge air to a wheel cavity 66 as shown in
In the illustrative embodiment, the channel 42 opens into the wheel cavity 66 as shown in
In the illustrative embodiment, the impeller backing plate 26 includes a radially extending portion 70, an axially extending portion 72, and a sealing portion 74 as shown in
In the illustrative embodiment, the bleed holes 44 extend through the radially extending portion 70 of the impeller backing plate 26 from a forward surface 78 of the impeller backing plate 26 to an aft surface 80 of the impeller backing plate 26 as shown in
In the illustrative embodiment, the bleed holes 44 are conical in shape as shown in
In the illustrative embodiment, the openings 82, 84 have a circular shape in the illustrative embodiment, but may have an ovular shape in some embodiments. In other embodiments, the openings 82, 84 of the holes 44 may be another suitable shape.
Each of the holes 44 extend axially through the backing plate 26 between the openings 82, 84 along a hole axis 86 as shown in
The present disclosure related to centrifugal compressors for use in gas turbine engines 10. One of the limiting mechanical factor of centrifugal compressors may be the metal temperature of the exducer blade tips 40. The metal temperature may be dependent on the how the back cavity 38 manages heat generation from windage. In some embodiments, air may be bled off the impeller 22 and allowed to flow radially inward along the aft surface 80 of the backing plate 26 before it is thrown overboard. This reduces windage near the outlet tip 40 along the aft side 36 of the impeller disk 32, but due to pressure losses, the air is not useful and thus thrown overboard. Conversely, if no air is bled off the outlet tip 40, the air in the back cavity 38 flows radially outward, increasing or maintaining high windage at or near the outlet tip 40, but providing high pressure, which could be useful in the turbine 18 for a number of applications.
In the illustrative embodiment, the windage heat generation is due to the rotation of the aft side 36 of the impeller disk 32 near the outlet tip 40. By arranging the bleed holes 44 radially inward from the outlet tip 40, the bleed flow moves along the aft side 36 near the outlet tip 40 where the windage heat is generated. In this way, the bleed flow reduces the windage heat generation at the aft side 36 of the impeller disk 32 near or radially inward of the outlet tip 40.
The present disclosure teaches an impeller 22 with a backing plate 26 with a plurality of bleed holes 44 and a manifold 20 coupled to the backing plate 26 that formed channels 42 to transmit the compressed gases bled off the outlet tip 40 to the turbine 18. The radial position R1 of the bleed holes 44 is tuned so that windage heat generated between the aft side 36 of the impeller disk 32 and the impeller backing plate 26 near the outlet tip 40 of the impeller 22 may be reduced while the compressed gases from the outlet tip 40 maintain a high enough pressure to be useful in the turbine 18.
The plurality of bleed holes 44 are compound in nature as shown in
While the disclosure has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
Number | Name | Date | Kind |
---|---|---|---|
2777395 | Disbrow | Jan 1957 | A |
4256436 | Fandrey et al. | Mar 1981 | A |
4459802 | Mowill | Jul 1984 | A |
4462204 | Hull | Jul 1984 | A |
4709546 | Weiler | Dec 1987 | A |
4761947 | Hennecke | Aug 1988 | A |
4786238 | Glaser et al. | Nov 1988 | A |
5147178 | Treece | Sep 1992 | A |
5224822 | Lenahan et al. | Jul 1993 | A |
5385442 | Lehe et al. | Jan 1995 | A |
5555721 | Bourneuf et al. | Sep 1996 | A |
5996331 | Palmer | Dec 1999 | A |
6035627 | Liu | Mar 2000 | A |
6190123 | Wunderwald et al. | Feb 2001 | B1 |
6227801 | Liu | May 2001 | B1 |
6234746 | Schroder et al. | May 2001 | B1 |
6238179 | Wunderwald et al. | May 2001 | B1 |
6257834 | Bremer et al. | Jul 2001 | B1 |
6276896 | Burge et al. | Aug 2001 | B1 |
6513335 | Fukutani | Feb 2003 | B2 |
6585482 | Liotta et al. | Jul 2003 | B1 |
6966191 | Fukutani et al. | Nov 2005 | B2 |
7287384 | Fish et al. | Oct 2007 | B2 |
7682131 | Legare et al. | Mar 2010 | B2 |
7775758 | Legare | Aug 2010 | B2 |
7827798 | Commaret et al. | Nov 2010 | B2 |
7841187 | Behaghel | Nov 2010 | B2 |
7942630 | Argaud et al. | May 2011 | B2 |
8029238 | Argaud et al. | Oct 2011 | B2 |
8075247 | Romani et al. | Dec 2011 | B2 |
8087249 | Ottaviano et al. | Jan 2012 | B2 |
8147178 | Ottaviano | Apr 2012 | B2 |
8177475 | Joco et al. | May 2012 | B2 |
8226353 | Argaud et al. | Jul 2012 | B2 |
8336317 | Blanchard et al. | Dec 2012 | B2 |
8402770 | Garin et al. | Mar 2013 | B2 |
8529195 | Widener | Sep 2013 | B2 |
8800291 | Bil et al. | Aug 2014 | B2 |
9003793 | Begin et al. | Apr 2015 | B2 |
9228497 | Ottow et al. | Jan 2016 | B2 |
9650916 | Barton et al. | May 2017 | B2 |
9683488 | Ress, Jr. et al. | Jun 2017 | B2 |
10359051 | Gage et al. | Jul 2019 | B2 |
10415391 | Duong et al. | Sep 2019 | B2 |
10830144 | Lambert | Nov 2020 | B2 |
20180066579 | Lambert et al. | Mar 2018 | A1 |
20180066585 | Lambert et al. | Mar 2018 | A1 |
20180291928 | Kenworthy et al. | Oct 2018 | A1 |
20190063324 | Gould | Feb 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20210293180 A1 | Sep 2021 | US |