The present invention is concerned with an improved method of installing a hydroelectric turbine onto the seabed or the like; and in particular a method which improves the handling of the electrical cable connected between the hydroelectric turbine and an onshore power station to which electricity generated by the turbine is supplied.
Due to the environmental damage which has been inflicted on the planet as a result of the burning of fossil fuels, renewable energy has finally begun to be given significant attention, with many projects being developed around solar energy, wind energy, and tidal power. Of these alternative forms of energy, tidal power is arguably the most attractive, given that tidal flows are entirely predictable and constant, unlike wind or solar energy which are relatively intermittent and therefore less dependable.
However, harnessing tidal energy does provide its own challenges, in particular with respect to the installation and maintenance of tidal power generators, for example hydro-electric turbines, which by the very nature of the operation of same must be located in relatively fast flowing tidal currents, and more than likely located on the seabed. In addition, in order to be economically viable these turbines must be built on a large scale. Essentially however these turbines must deliver power back to shore for eventual supply into the grid. The level of electricity generated by the turbines renders working on the electrical systems a hazardous operation, and this is magnified by the location of the turbines under water on the seabed, and in regions of fast flowing tides. These regions of fast flowing tides are often found in isolated locations making getting to and from the site a time consuming, dangerous, and therefore expensive undertaking. In addition, the process of installing and removing such turbines generally requires the use of multiple vessels and associated heavy machinery, in addition to experience divers. Furthermore, these turbines will generally need to be deployed in multiples in the form of a tidal turbine farm in order to be economically viable. Thus the installation process is multiplied by the number of turbines to be installed. The availability of such equipment and divers is relative scare, and thus it is extremely desirable to reduce the time and equipment necessary to perform the installation and removal of tidal turbines.
Due to both the relatively large electric currents generated by hydroelectric turbines, and the extremely harsh conditions under which the turbines and associated electrical cables are exposed, the electrical cable extending onshore from each turbine must be relatively large and robust. As a result of the diameter of the cable, which may be in the region of 300-500 mm, and given the length of cable involved, the weight of the cable is significant. The handling of the cable is therefore both a difficult and time-consuming operation, made even more difficult by the tidal conditions present at the sites where hydroelectric turbines are deployed. The cabling is also relatively inflexible and so the mishandling of same can quickly and easily result in kinking/knotting of the cable, thus rendering same permanently damaged and therefore requiring replacement.
It is therefore an object of the present invention to provide a method of installing a hydroelectric turbine, which method avoids damage to the cable during the installation process.
The present invention therefore provides a method of installing a hydroelectric turbine system at a tidal site comprising the steps of:
connecting a pre-laid power cable to the system;
lowering the system towards a deployment site while simultaneously displacing the system in line with the direction of tidal flow such as to maintain tension in the cable.
Preferably, the method comprises positioning the system substantially above the deployment site prior to connecting the cable.
Preferably, the method comprises lowering the system from a deployment vessel and simultaneously displacing the deployment vessel such as to maintain tension in the cable.
Preferably, the deployment vessel comprises a source of propulsion.
Preferably, the method comprises the step of positioning an anchor to be upstream of the system during the lowering step; directly or indirectly connecting the system to the anchor; and using the anchor to achieve the displacement of the system during the lowering thereof.
Preferably, the method comprises positioning the anchor on the seabed.
Preferably, the method comprises the steps of towing the deployment vessel behind a towing vessel; and utilising the towing vessel to achieve the displacement of the deployment vessel.
Preferably, the method comprises the step of winching the deployment vessel towards the towing vessel during lowering of the system in order to achieve the displacement of the deployment vessel.
Preferably, the method comprises the step of securing the towing vessel to the anchor and pulling the towing vessel towards the anchor to at least partially achieve the displacement of the deployment vessel.
Preferably, the deployment vessel or the towing vessel comprises a dynamic positioning vessel.
Preferably, the method comprises the step of marking the location of the pre-laid cable with a floatation device.
Preferably, the method comprises lowering the system during a running tide.
Preferably, the method comprises the step of laterally displacing the system prior to or as part of final positioning of the system at the deployment site.
As used herein, the term “hydroelectric turbine system” is intended to mean either a hydroelectric turbine mounted on a base, which can be lowered together onto the seabed; the base in isolation from the turbine, which may be lowered to the seabed and the turbine subsequently lowered into position onto the base; or the turbine in isolation from the base, to be lowered onto the previously located base.
Referring now to the accompanying drawings, there is illustrated a method of installing a hydroelectric turbine 10 onto the seabed B at a tidal site according to a preferred embodiment of the invention. While the following description refers to installing the turbine 10 on the seabed B it will be appreciated that the method of the invention may be employed at any other suitable or desired location, for example installing the turbine 10 onto a river bed or the like.
Referring now in particular to
With the cable C pre-laid to the deployment site S the turbine 10 is, as mentioned above, brought into position substantially above the deployment site S. In the preferred embodiment illustrated the turbine 10 is carried by a deployment vessel 12 which may be of any suitable form and, in the embodiment illustrated, is in the form of a non-powered barge 12. The deployment vessel 12 may however comprise a source of propulsion. A towing vessel in the form of a tug 14 is used in order to tow the turbine 10 and barge 12 into position, and in the embodiment illustrated, against the running tide T. In this embodiment a simple tow line 16 is connected between the tug 14 and the barge 12, and may be adjusted in length in order to make small corrections to the position of the turbine 10 and barge 12. The tug 14 could however be replaced with a dynamic positioning vessel (not shown) which could then utilise GPS in order to accurately maintain a desired position during the installation process. The turbine 10 may be releasably connected to the barge 12 by any number of suitable arrangements, and the details of the connection are not material to the method of the invention, and so will not be described in detail hereinafter.
Prior to towing the turbine 10 into position above the deployment S at least one anchor 18 is installed, in the embodiment illustrated, at a location on the seabed B upstream of the tidal deployment site S with respect to the direction in which the tide T is flowing during the installation. The anchor 18 may be of any suitable form, and in the embodiment illustrated is in the form of a simple rock-type anchor 18. However, the type and/or size of anchor 18 may vary depending on the conditions on the seabed B. Again in order to mark the position above the water W of the anchor 18 it is preferable that a tethered buoy (not shown) or similar marker is secured to the anchor 18, and for reasons described hereinafter.
Once the tug 14 has positioned the turbine 10 and barge 12 above the deployment site S the tug 14 is connected to the anchor 18 via an anchor line 20. This is achieved simply by retrieving the buoy (not shown) connected to the anchor 18 onto the tug 14 and then suitably securing the anchor line 20 to the tug 14. The anchor 18 now allows the tug 14, and therefore the turbine 10 and barge 12, to hold position against the running tide T. It should however be noted at this point, and as will become clear from the following description of the method of installation of the present invention, that the tug 14 may be dispensed with, and in such a scenario the vessel 12 would be connected directly to the anchor 18. This is a possibility regardless of whether the vessel 12 has a source of propulsion or not.
Once the turbine 10 and vessel 12 are secured against the running tide T by the anchor 18, the free end of the cable C (or umbilical) is recovered to the surface and electrically connected to the turbine 10 in known manner. The cable C may be recovered using a conventional winch arrangement provided on the barge 12, or may be achieved by a separate support vessel (not shown). At this point the turbine 10 is prepared for lowering to the seabed B. In the embodiment illustrated the turbine 10 is pre-mounted on a base 22 which will support the turbine 10 on the seabed B during use. Thus in the embodiment illustrated it is the base 22 which is used to secure the turbine 10 to the barge 12. The turbine 10 and base 22 together define a hydroelectric turbine system. It is envisaged that the cable C could be connected to the base 22, with a suitable connection then being provided between the base 22 and the turbine 10.
Referring then to
While the turbine 10 is being lowered towards the seabed B it is simultaneously displaced in line with the direction of tidal flow, and in the embodiment illustrated forwardly against the running tide T and towards the anchor 18, such as to maintain tension in the cable C. This is achieved by either pulling the tug 14 forwardly on the anchor 18, or by shortening the tow line 16 between the tug 14 and the barge 12, or a combination of the above-mentioned procedures. However as mentioned above, the tug 14 may be omitted and the barge 12 connected directly to the anchor 18. In this case the line (not shown) connecting the barge 12 to the anchor 18 would be used to pull the barge 12 forward against the tide T. In either scenario, the turbine 10 will be lowered towards the seabed B along an arced path with the cable C remaining in line with the direction of tidal flow. This path ensures that tension is maintained in the electrical cable C connected to the turbine 10 or base 22. This tension ensures that no kinking or knotting of the cable C can occur during the lowering of the turbine 10. Once the turbine 10 is positioned on the seabed B each of the support lines 24 can be disconnected therefrom and winched back up onto the barge 12. At this point the turbine 10 may begin operation and feeding power onshore via the cable C, or to any other desired location. At this point, the cable C should be in a straight line with respect to the direction of tidal flow T, and under tension in order to prevent any undue movement thereof during operation.
It will be appreciated that the above described method of installation could be achieved in the absence of the anchor 18, although with greater difficulty. The tug 14, or preferably dynamic positioning vessel (not shown) could be used to initially hold the position of the turbine 10 and barge 12 against the tide T while the cable C is connected to the turbine 10. Once lowering of the turbine 10 is commenced the tug 14 could then pull the barge 12 forwardly in order to achieve the above mention arced path of the turbine 10.
If it is desired to relocate the turbine 10 for whatever reason, this can be achieved before the support lines 24 are disconnected from the base 22. Relocation may be required for example due to an undesirable attitude of the base 22 following initial installation on the seabed B. Due to the configuration of the cable C, where for example the last 100 meters or the like is in a straight line, the base 22 can be raised slightly off the seabed B and the tug 14 used to reposition the barge 12 laterally of the original position.
In order to remove the turbine 10 from the seabed B, for example for maintenance or replacement, the above procedure is simply reversed.
It is also envisaged that the method of the present invention could be implemented with the tide flowing in the opposite direction to that described and shown with respect to
Number | Date | Country | Kind |
---|---|---|---|
08007477 | Apr 2008 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/002793 | 4/16/2009 | WO | 00 | 12/16/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/127415 | 10/22/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
228467 | Maclay | Jun 1880 | A |
928536 | Pino | Jul 1909 | A |
1710103 | Nelson | Apr 1929 | A |
2054142 | Sharp | Sep 1936 | A |
2470797 | Thomas | May 1949 | A |
2501696 | Souczek | Mar 1950 | A |
2563279 | Rushing | Aug 1951 | A |
2658453 | Walters | Nov 1953 | A |
2782321 | Fischer | Feb 1957 | A |
2792505 | Baudry | May 1957 | A |
2874547 | Fiore | Feb 1959 | A |
3078680 | Wapsala | Feb 1963 | A |
3209156 | Struble, Jr. | Sep 1965 | A |
3292023 | Korber | Dec 1966 | A |
3342444 | Nelson | Sep 1967 | A |
3355998 | Roemisch | Dec 1967 | A |
3384787 | Schwartz | May 1968 | A |
3422275 | Braikevitch et al. | Jan 1969 | A |
3433024 | Diamond et al. | Mar 1969 | A |
3477236 | Burrus | Nov 1969 | A |
3487805 | Satterthwaite et al. | Jan 1970 | A |
3708251 | Pierro | Jan 1973 | A |
3986787 | Mouton, Jr. et al. | Oct 1976 | A |
3987638 | Burkhardt et al. | Oct 1976 | A |
4095918 | Mouton et al. | Jun 1978 | A |
4163904 | Skendrovic | Aug 1979 | A |
4219303 | Mouton, Jr. et al. | Aug 1980 | A |
4274009 | Parker, Sr. | Jun 1981 | A |
4367413 | Nair | Jan 1983 | A |
4421990 | Heuss et al. | Dec 1983 | A |
4427897 | Migliori | Jan 1984 | A |
4523878 | Richart et al. | Jun 1985 | A |
4541367 | Lindberg | Sep 1985 | A |
4613762 | Soderholm | Sep 1986 | A |
4720640 | Anderson et al. | Jan 1988 | A |
4740711 | Sato et al. | Apr 1988 | A |
4744697 | Coppens | May 1988 | A |
4744698 | Dallimer et al. | May 1988 | A |
4810135 | Davenport et al. | Mar 1989 | A |
4867605 | Myers et al. | Sep 1989 | A |
4868408 | Hesh | Sep 1989 | A |
4868970 | Schultz et al. | Sep 1989 | A |
4990810 | Newhouse | Feb 1991 | A |
5592816 | Williams | Jan 1997 | A |
5606791 | Fougere et al. | Mar 1997 | A |
5609441 | Khachaturian | Mar 1997 | A |
5656880 | Clark | Aug 1997 | A |
5662434 | Khachaturian | Sep 1997 | A |
5715590 | Fougere et al. | Feb 1998 | A |
5800093 | Khachaturian | Sep 1998 | A |
5998905 | Fougere et al. | Dec 1999 | A |
6039506 | Khachaturian | Mar 2000 | A |
6109863 | Milliken | Aug 2000 | A |
6113314 | Campbell | Sep 2000 | A |
6166472 | Pinkerton | Dec 2000 | A |
6168373 | Vauthier | Jan 2001 | B1 |
6232681 | Johnston et al. | May 2001 | B1 |
6242840 | Denk et al. | Jun 2001 | B1 |
6293734 | Thomas et al. | Sep 2001 | B1 |
6300689 | Smalser | Oct 2001 | B1 |
6367399 | Khachaturian | Apr 2002 | B1 |
6406251 | Vauthier | Jun 2002 | B1 |
6409466 | Lamont | Jun 2002 | B1 |
6445099 | Roseman | Sep 2002 | B1 |
6476709 | Wuidart et al. | Nov 2002 | B1 |
6612781 | Jackson | Sep 2003 | B1 |
6648589 | Williams | Nov 2003 | B2 |
RE38336 | Williams | Dec 2003 | E |
6729840 | Williams | May 2004 | B2 |
6770987 | Sogard et al. | Aug 2004 | B1 |
6777851 | Maslov | Aug 2004 | B2 |
6806586 | Wobben | Oct 2004 | B2 |
6840713 | Schia et al. | Jan 2005 | B1 |
6843191 | Makotinsky | Jan 2005 | B1 |
6857821 | Steenhuis et al. | Feb 2005 | B2 |
6957947 | Williams | Oct 2005 | B2 |
6995479 | Tharp | Feb 2006 | B2 |
6998730 | Tharp | Feb 2006 | B2 |
7190087 | Williams | Mar 2007 | B2 |
D543495 | Williams | May 2007 | S |
7275891 | Owen et al. | Oct 2007 | B2 |
7352078 | Gehring | Apr 2008 | B2 |
7378750 | Williams | May 2008 | B2 |
7425772 | Novo Vidal | Sep 2008 | B2 |
7471009 | Davis et al. | Dec 2008 | B2 |
7527006 | Khachaturian | May 2009 | B2 |
7611307 | Owen et al. | Nov 2009 | B2 |
7845296 | Khachaturian | Dec 2010 | B1 |
7874788 | Stothers et al. | Jan 2011 | B2 |
7976245 | Finnigan | Jul 2011 | B2 |
20020034437 | Williams | Mar 2002 | A1 |
20030044272 | Addie et al. | Mar 2003 | A1 |
20030137149 | Northrup et al. | Jul 2003 | A1 |
20030168864 | Heronemus et al. | Sep 2003 | A1 |
20030193198 | Wobben | Oct 2003 | A1 |
20030218338 | O'Sullivan et al. | Nov 2003 | A1 |
20040021437 | Maslov et al. | Feb 2004 | A1 |
20040201299 | Naritomi et al. | Oct 2004 | A1 |
20040227500 | O'Meara | Nov 2004 | A1 |
20040262926 | Hansen | Dec 2004 | A1 |
20050005592 | Fielder | Jan 2005 | A1 |
20050031442 | Williams | Feb 2005 | A1 |
20060261597 | Gehring | Nov 2006 | A1 |
20070018459 | Williams | Jan 2007 | A1 |
20070063448 | Kowalczyk | Mar 2007 | A1 |
20070231072 | Jennings et al. | Oct 2007 | A1 |
20070291426 | Kasunich et al. | Dec 2007 | A1 |
20080012538 | Stewart et al. | Jan 2008 | A1 |
20080236159 | Tierney | Oct 2008 | A1 |
20090162144 | Ayre | Jun 2009 | A1 |
20090243298 | Jean et al. | Oct 2009 | A1 |
20090278357 | Williams | Nov 2009 | A1 |
20100025998 | Williams | Feb 2010 | A1 |
20100026002 | Spooner | Feb 2010 | A1 |
20100068037 | Ives | Mar 2010 | A1 |
20100172698 | Ives et al. | Jul 2010 | A1 |
20100196100 | Soe-Jensen | Aug 2010 | A1 |
20100201129 | Holstein et al. | Aug 2010 | A1 |
20100232885 | Ives et al. | Sep 2010 | A1 |
20100295388 | Ives et al. | Nov 2010 | A1 |
20110018274 | Ives et al. | Jan 2011 | A1 |
20110110770 | Spooner et al. | May 2011 | A1 |
20110305518 | Pearce et al. | Dec 2011 | A1 |
20120027522 | Ives et al. | Feb 2012 | A1 |
20120187680 | Spooner et al. | Jul 2012 | A1 |
20120235412 | Dunne et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
2388513 | Aug 2000 | CA |
2352673 | Jan 2003 | CA |
260699 | Apr 1947 | CH |
146935 | Aug 1983 | CH |
31 16 740 | Nov 1982 | DE |
3116740 | Nov 1982 | DE |
3638129 | May 1988 | DE |
3718954 | Dec 1988 | DE |
19948198 | Apr 2001 | DE |
10101405 | Jul 2002 | DE |
20308901 | Sep 2003 | DE |
10244038 | Apr 2004 | DE |
102007016380 | Oct 2008 | DE |
1318299 | Dec 2003 | EP |
1564455 | Jan 2005 | EP |
1691377 | Feb 2006 | EP |
1876350 | Jan 2008 | EP |
1878912 | Jan 2008 | EP |
1878913 | Jan 2008 | EP |
1879280 | Jan 2008 | EP |
1878911 | Sep 2008 | EP |
1992741 | Nov 2008 | EP |
1885047 | Dec 2008 | EP |
1980670 | Jul 2009 | EP |
2088311 | Aug 2009 | EP |
2110910 | Oct 2009 | EP |
2112370 | Oct 2009 | EP |
1980746 | Jun 2010 | EP |
2199199 | Jun 2010 | EP |
2199598 | Jun 2010 | EP |
2199599 | Jun 2010 | EP |
2199601 | Jun 2010 | EP |
2199602 | Jun 2010 | EP |
2199603 | Jun 2010 | EP |
2200170 | Jun 2010 | EP |
2071709 | Sep 2010 | EP |
2209175 | Sep 2010 | EP |
2241749 | Oct 2010 | EP |
2302204 | Mar 2011 | EP |
2302755 | Mar 2011 | EP |
2302766 | Mar 2011 | EP |
2823177 | Oct 2002 | FR |
2 859 495 | Mar 2005 | FR |
204505 | Oct 1923 | GB |
924347 | Apr 1963 | GB |
980575 | Jan 1965 | GB |
1131352 | Oct 1968 | GB |
1413835 | Nov 1975 | GB |
2 316 461 | Feb 1998 | GB |
2344843 | Jun 2000 | GB |
2408294 | May 2005 | GB |
2431628 | May 2007 | GB |
2434413 | Jul 2007 | GB |
2447514 | Sep 2008 | GB |
59203881 | Nov 1984 | JP |
63055370 | Mar 1988 | JP |
01043908 | Feb 1989 | JP |
2000341818 | Dec 2000 | JP |
2005069025 | Mar 2005 | JP |
2005248822 | Sep 2005 | JP |
2006094645 | Apr 2006 | JP |
2007255614 | Oct 2007 | JP |
2007291882 | Nov 2007 | JP |
WO 9844372 | Oct 1998 | WO |
9852819 | Nov 1998 | WO |
9966623 | Dec 1999 | WO |
0077393 | Dec 2000 | WO |
0134973 | May 2001 | WO |
0134977 | May 2001 | WO |
02099950 | Dec 2002 | WO |
03014561 | Feb 2003 | WO |
03025385 | Mar 2003 | WO |
03046375 | Jun 2003 | WO |
2004015264 | Feb 2004 | WO |
2004027257 | Apr 2004 | WO |
2004107549 | Dec 2004 | WO |
2004113717 | Dec 2004 | WO |
2005045243 | May 2005 | WO |
2005061887 | Jul 2005 | WO |
2005078233 | Aug 2005 | WO |
2005080789 | Sep 2005 | WO |
2005116443 | Dec 2005 | WO |
2006029496 | Mar 2006 | WO |
2007043894 | Apr 2007 | WO |
2007055585 | May 2007 | WO |
2007083105 | Jul 2007 | WO |
2007086814 | Aug 2007 | WO |
2007125349 | Nov 2007 | WO |
2008004877 | Jan 2008 | WO |
2008006614 | Jan 2008 | WO |
2008050149 | May 2008 | WO |
2008081187 | Jul 2008 | WO |
WO2010118766 | Oct 2010 | WO |
WO2011039249 | Apr 2011 | WO |
WO2011039255 | Apr 2011 | WO |
WO2011039267 | Apr 2011 | WO |
Entry |
---|
International Search Report completed May 26, 2009, mailed Jun. 4, 2009, from corresponding International Application No. PCT/EP2009/002793. |
PCT Written Opinion of International Searching Authority, Jun. 4, 2009. |
Notification of Transmittal, mailed Jun. 4, 2009. |
U.S. Appl. No. 13/133,235, filed Jun. 7, 2011, including the specification, claims and drawings. |
U.S. Appl. No. 13/133,805, filed Jun. 9, 2011, including the specification, claims and drawings. |
U.S. Appl. No. 13/133,504, filed Jun. 8, 2011, including the specification, claims and drawings. |
U.S. Appl. No. 13/133,507, filed Jun. 8, 2011, including the specification, claims and drawings. |
U.S. Appl. No. 13/133,832, filed Jun. 9, 2011, including the specification, claims and drawings. |
U.S. Appl. No. 13/264,667, filed Oct. 14, 2011, including specification, claims and drawings. |
Number | Date | Country | |
---|---|---|---|
20110088253 A1 | Apr 2011 | US |