Turbine nozzle and shroud

Information

  • Patent Grant
  • 10072512
  • Patent Number
    10,072,512
  • Date Filed
    Wednesday, April 24, 2013
    11 years ago
  • Date Issued
    Tuesday, September 11, 2018
    6 years ago
Abstract
A nozzle and shroud for use in an air cycle machine has a plate and a shroud curving in a first axial direction about a center axis of the shroud relative to the plate. A plurality of vanes extends in a second axial direction away from the plate. The plurality of vanes extends for a height away from the plate and a width defined as the closest distance between two adjacent vanes, with a ratio of the height to the width being between 1.7377 and 2.1612. An air cycle machine and a method of repair are also disclosed.
Description
BACKGROUND

This application relates to a turbine nozzle and shroud for use in an air cycle machine.


Air cycle machines are known and, typically, include one or more turbines which receive a compressed air source, and are driven to rotate. The turbines, in turn, rotate a compressor rotor. Air is conditioned by the air cycle machine and moved for use in an aircraft cabin air conditioning and temperature control system.


The turbines are typically provided with a nozzle and shroud which controls the flow of air upstream and downstream of a turbine rotor.


SUMMARY

A nozzle and shroud for use in an air cycle machine has a plate and a shroud curving in a first axial direction about a center axis of the shroud relative to the plate. A plurality of vanes extends in a second axial direction away from the plate. The plurality of vanes extends for a height away from the plate and a width defined as the closest distance between two adjacent vanes, with a ratio of the height to the width being between 1.7377 and 2.1612. An air cycle machine and a method of repair are also disclosed.


These and other features may be best understood from the following drawings and specification.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an air cycle machine.



FIG. 2A is a cross-sectional view through a turbine nozzle and shroud for a first stage turbine.



FIG. 2B is a view of the turbine nozzle portion.



FIG. 2C shows details of vanes.



FIG. 2D is a sectional line taken along line D-D of FIG. 2C.





DETAILED DESCRIPTION

An air cycle machine 20 is illustrated in FIG. 1 having a fan 22 being driven by a shaft 24. As known, a compressor 35 receives compressed air from a compressed air source at an inlet 126 and further compresses the air. The air passes downstream into a first turbine inlet 26 which drives a first stage turbine rotor 128. The air then passes across a second stage turbine rotor 32, and through an outlet 34. The air may be used in an aircraft cabin and as part of a cabin air conditioning and temperature control system.


A turbine nozzle 36 is associated with the second stage turbine rotor and serves to direct airflow from the inlet to the turbine rotor 32.


A first stage shroud and nozzle 127 includes a shroud 128 downstream of the rotor 28 and a nozzle 130 upstream of the rotor 28.



FIG. 2A shows details of the nozzle and shroud 127. As shown, a shroud portion 128 curves forwardly away from a plate 121 along a center axis A. The plate 121 carries a plurality of vanes 132, which can also be seen in FIG. 2B. In one embodiment, there were 19 vanes spaced circumferentially about center axis C of the nozzle and shroud 127.


As shown in FIG. 2C, a cross-sectional view D-D is taken between two adjacent vanes 132. As shown in FIG. 2D, a height or distance the vane 132 extends away from the plate 121 is defined at d1. A distance d2 may be defined as a passage width and is the closest distance between two adjacent vanes 132, measured tangent, or parallel to the sides of the airfoil surfaces of vane 122.


In one embodiment, the height d1 was 0.560 inch (1.42 centimeters) and the width d2 was 0.289 inch (0.734 centimeters). This results in a total flow area between all 19 of the vanes of 3.075 square inches (7.8105 centimeters).


In embodiments, a ratio of a height d1 to the width d2 was between 1.7377 and 2.1612. In embodiments, a total nozzle flow area was between 2.7491 and 3.4191 square inches).


The nozzle and shroud 127 has a tungsten carbide erosion coating. The nozzle and shroud 127 is formed of a base of aluminium and then provided with a tungsten carbide erosion coating. Preferably, a high velocity oxy fuel coating technique is provided utilizing continuous burning.


A method of repairing air cycle machine 20 includes the steps of removing a nozzle and shroud combination 127 from a location adjacent a first stage turbine rotor 28. A replacement nozzle and shroud combination 127 is then mounted adjacent rotor 28.


Details of the nozzle 36 are disclosed and claimed in co-pending application Ser. No. 13/869,048, entitled Turbine Nozzle for Air Cycle Machine, and filed on even date herewith.


Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. For that reason, the following claims should be studied to determine the true scope and content of this disclosure.

Claims
  • 1. A nozzle and shroud for use in an air cycle machine comprising: a plate and a shroud curving in a first axial direction about a center axis of said shroud relative to said plate;a plurality of vanes extending in a second axial direction away from said plate, with said plurality of vanes extending for a height away from said plate and a width being defined as the closest distance between two adjacent vanes, with a ratio of said height to said width being between 1.7377 and 2.1612;wherein there are 19 circumferentially spaced ones of said vanes; andwherein a total flow area is defined between all 19 of said vanes and said total flow area being between 2.7491 and 3.4191 square inches (17.736-22.058 square centmeters).
  • 2. The nozzle and shroud as set forth in claim 1, wherein said plate and said shroud are formed of a base aluminum material provided with a tungsten carbide erosion coating.
  • 3. An air cycle machine comprising: a first stage turbine rotor and a second stage turbine rotor, said first and second stage turbine rotors being configured to drive a shaft, and a compressor rotor driven by said shaft, and a fan rotor driven by said shaft;a shroud and nozzle combination provided adjacent said first stage turbine rotor with said nozzle being at a location upstream of said first stage turbine rotor, and said shroud curving to a location downstream of said first stage turbine rotor and said shroud and nozzle including a plate and said shroud curving in a first axial direction about a center axis of said shroud relative to said plate;a plurality of vanes extending in a second axial direction away from said plate, with said plurality of vanes extending for a height away from said plate and a width being defined as the closest distance between two adjacent vanes, with a ratio of said height to said width being between 1.7377 and 2.1612;wherein there are 19 circumferentially spaced ones of said vanes; andwherein a total flow area is defined between all 19 of said vanes and said total flow area being between 2.7491 and 3.4191 square inches (17.736-22.058 square centmeters).
  • 4. The air cycle machine as set forth in claim 3, wherein said plate and said shroud are formed of a base aluminum material provided with a tungsten carbide erosion coating.
  • 5. A method of repairing an air cycle machine comprising the steps of: (a) removing a nozzle and shroud combination from a location adjacent a first stage turbine rotor in an air cycle machine, and replacing said removed shroud and nozzle combination with a replacement shroud and nozzle combination;(b) the replacement nozzle and shroud combination including a plate and a shroud curving in a first axial direction about a center axis of said shroud relative to said plate, and a plurality of vanes extending in a second axial direction away from said plate, with said plurality of vanes extending for a height away from said plate and a width being defined as the closest distance between two adjacent vanes, with a ratio of said height to said width being between 1.7377 and 2.1612;wherein there are 19 circumferentially spaced ones of said vanes; andwherein a total flow area is defined between all 19 of said vanes and said total flow area being between 2.7491 and 3.4191 square inches (17.736-22.058 square centmeters).
  • 6. The method as set forth in claim 5, wherein said plate and said shroud are formed of a base aluminum material provided with a tungsten carbide erosion coating.
US Referenced Citations (22)
Number Name Date Kind
3972644 Johnson Aug 1976 A
4726101 Draghi et al. Feb 1988 A
4798515 Hsia et al. Jan 1989 A
5142778 Smolinski Sep 1992 A
5249934 Merritt Oct 1993 A
5299909 Wulf Apr 1994 A
5309735 Maher, Jr. May 1994 A
5311749 McAuliffe May 1994 A
5460003 Nenov Oct 1995 A
5522134 Rowe Jun 1996 A
5630700 Olsen et al. May 1997 A
6109867 Portefaix Aug 2000 A
6398489 Burdgick et al. Jun 2002 B1
6789315 Marques Sep 2004 B2
6942183 Zywiak Sep 2005 B2
7322202 Zywiak et al. Jan 2008 B2
7779644 Decrissantis et al. Aug 2010 B2
8016551 Lin Sep 2011 B2
8113787 Barril Feb 2012 B2
8347647 McAuliffe Jan 2013 B2
20070134105 Beers et al. Jun 2007 A1
20120156028 Colson Jun 2012 A1
Foreign Referenced Citations (1)
Number Date Country
103016069 Apr 2013 CN
Related Publications (1)
Number Date Country
20140321978 A1 Oct 2014 US