The present invention relates generally to gas turbine engines, and more specifically, to turbines therein.
In a gas turbine engine, air is pressurized in a compressor and subsequently mixed with fuel and burned in a combustor to generate combustion gases. One or more turbines downstream of the combustor extract energy from the combustion gases to drive the compressor, as well as a fan, shaft, propeller, or other mechanical load. Each turbine comprises one or more rotors each comprising a disk carrying an array of turbine blades or buckets. A stationary nozzle comprising an array of stator vanes having radially outer and inner endwalls in the form of annular bands is disposed upstream of each rotor, and serves to optimally direct the flow of combustion gases into the rotor. Collectively each nozzle and the downstream rotor is referred to as a “stage” of the turbine.
The complex three-dimensional (3D) configuration of the vane and blade airfoils is tailored for maximizing efficiency of operation, and varies radially in span along the airfoils as well as axially along the chords of the airfoils between the leading and trailing edges. Accordingly, the velocity and pressure distributions of the combustion gases over the airfoil surfaces as well as within the corresponding flow passages also vary.
Undesirable pressure losses in the combustion gas flowpaths therefore correspond with undesirable reduction in overall turbine efficiency. For example, the combustion gases enter the corresponding rows of vanes and blades in the flow passages therebetween and are necessarily split at the respective leading edges of the airfoils.
The locus of stagnation points of the incident combustion gases extends along the leading edge of each airfoil. Corresponding boundary layers are formed along the pressure and suction sides of each airfoil, as well as along each radially outer and inner endwall which collectively bound the four sides of each flow passage. In the boundary layers, the local velocity of the combustion gases varies from zero along the endwalls and airfoil surfaces to the unrestrained velocity in the combustion gases where the boundary layers terminate.
One common source of turbine pressure losses is the formation of horseshoe and passage vortices generated as the combustion gases are split in their travel around the airfoil leading edges. A total pressure gradient is effected in the boundary layer flow at the junction of the leading edge and endwalls of the airfoil. This pressure gradient at the airfoil leading edges forms a pair of counterrotating horseshoe vortices which travel downstream on the opposite sides of each airfoil near the endwall. Turning of the horseshoe vortices introduces streamwise vorticity and thus builds up a passage vortex as well.
The two vortices travel aft along the opposite pressure and suction sides of each airfoil and behave differently due to the different pressure and velocity distributions therealong. For example, computational analysis indicates that the suction side vortex migrates away from the endwall toward the airfoil trailing edge and then interacts following the airfoil trailing edge with the pressure side vortex flowing aft thereto.
The interaction of the pressure and suction side vortices occurs near the mid-span region of the airfoils and creates total pressure loss and a corresponding reduction in turbine efficiency. These vortices also create turbulence and increase undesirable heating of the endwalls.
Since the horseshoe and passage vortices are formed at the junctions of turbine rotor blades and their integral root platforms, as well at the junctions of nozzle stator vanes and their outer and inner bands, corresponding losses in turbine efficiency are created, as well as additional heating of the corresponding endwall components.
Accordingly, it is desirable to minimize horseshoe and passage vortex effects.
The above-mentioned need is met by the present invention, which provides a turbine nozzle having a 3D-countoured inner band surface.
According to one aspect of the invention, a turbine nozzle includes an array of turbine vanes between inner and outer bands. Each vane includes opposed pressure and suction sides extending between opposed leading and trailing edges. The vanes define a plurality of flow passages each of which is bounded between the inner band, the outer band, and adjacent first and second vanes. A surface of the inner band in each of the passages is contoured in a non-axisymmetric shape including a peak of relatively higher radial height adjoining the pressure side of the first vane adjacent its leading edge, and a trough of relatively lower radial height is disposed parallel to and spaced-away from the suction side of the second vane aft of its leading edge. The peak and trough define cooperatively define an arcuate channel extending axially along the inner band between the first and second vanes.
The invention may be best understood by reference to the following description taken in conjunction with the accompanying drawing figures in which:
Referring to the drawings wherein identical reference numerals denote the same elements throughout the various views,
While the illustrated engine 10 is a high-bypass turbofan engine, the principles described herein are equally applicable to turboprop, turbojet, and turboshaft engines, as well as turbine engines used for other vehicles or in stationary applications. Furthermore, while a LPT nozzle is used as an example, it will be understood that the principles of the present invention may be applied to any turbine blade having inner and outer shrouds or platforms, including without limitation HPT and intermediate-pressure turbine (“IPT”) vanes. Furthermore, the principles described herein are also applicable to turbines using working fluids other than air, such as steam turbines.
The LPT 20 includes a series of stages each having a stationary nozzle and a downstream rotating disk with turbine blades or buckets (not shown).
In operation, the gas pressure gradient at the airfoil leading edges causes the formation of a pair of counterrotating horseshoe vortices which travel downstream on the opposite sides of each airfoil near the inner band 30.
As shown in
The 3D-contouring is explained with reference to
As best seen in
As best seen in
In the particular example illustrated, the highest portion of the peak 46 is higher than the baseline profile B by approximately 60% to 70% of the total difference in radial height between the lowest and highest locations of the hot side 31, or about six to seven units, where the total height difference is about 10 units. In the chordwise direction, the highest portion of the peak 46 is located between the mid-chord position and the leading edge 38 of the adjacent vane 28.
In the example shown here, there is no significant ridge, fillet, or other similar structure present on the hot side 31 of the inner band 30 aft of the trailing edge 40 of the vanes 28. In other words, there is a sharply defined intersection present between the trailing edge 40 of the vanes 28 at their roots 34 and the inner band 30. For mechanical strength, it may be necessary to include some type of fillet at this location. For aerodynamic purposes any fillet present should be minimized.
Whereas the peak 46 is locally isolated near its maximum height, the trough 48 has a generally uniform and shallow depth over substantially its entire longitudinal or axial length. Collectively, the elevated peak 46 and depressed trough 48 provide an aerodynamically smooth chute or curved flute that follows the arcuate contour of the flowpath between the concave pressure side 42 of one vane 28 and the convex suction side 44 of the adjacent vane 28 to smoothly channel the combustion gases therethrough. In particular the peak 46 and trough 48 cooperating together conform with the incidence angle of the combustion gases for smoothly banking or turning the combustion gases for reducing the adverse effect of the horseshoe and passage vortices.
Computer analysis of the nozzle and inner band configuration described above predicts significant reduction in aerodynamic pressure losses near the inner band hot side 31 during engine operation. The improved pressure distribution extends from the hot side 31 over a substantial portion of the lower span of the vane 28 to significantly reduce vortex strength and cross-passage pressure gradients that drive the horseshoe vortices toward the airfoil suction sides 44. The 3D contoured hot side 31 also decreases vortex migration toward the mid-span of the vanes 28 while reducing total pressure loss. These benefits increase performance and efficiency of the LPT and engine.
The foregoing has described a turbine nozzle having a 3D-contoured inner band. While specific embodiments of the present invention have been described, it will be apparent to those skilled in the art that various modifications thereto can be made without departing from the spirit and scope of the invention. Accordingly, the foregoing description of the preferred embodiment of the invention and the best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation, the invention being defined by the claims.
The U.S. Government may have certain rights in this invention pursuant to contract number W911W6-07-2-0002 awarded by the Department of the Army.