The invention relates, most generally, to a vacuum powered turbine cleaning device used to remove particles from semiconductor manufacturing tools.
The semiconductor manufacturing industry utilizes various types of manufacturing or processing equipment, also known as processing tools, to fabricate advanced semiconductor integrated circuit devices and other devices that are highly integrated. These highly integrated devices are formed to very tight design tolerances and include increasingly smaller feature sizes. As feature sizes continue to shrink further within the sub-micron range, the devices are more susceptible to damage due to particle contamination. Particle contamination therefore becomes an increasingly serious problem as even the smallest particles and very low particle densities must be controlled because device functionality can be destroyed by even one small particle. The manufacturing tools used to fabricate semiconductor devices must therefore be maintained at high levels of cleanliness. It is therefore of critical importance to prevent the accumulation of particles in such manufacturing tools and to completely remove any and all particles from such manufacturing tools when cleaning or other maintenance procedures are carried out upon the tool.
Many processing tools are available and used to coat semiconductor substrates with photoresist or other photosensitive materials. Much of the foreign material introduced into the processing, i.e. coating, chamber is unused and must be removed from the processing environment. This includes the photoresist materials that are spun off the edges of semiconductor substrates that rotate at high speeds. The processing tools include outlet and exhaust ports and tubes through which the unused material is expelled. A buildup of residue of the unused coating material can accumulate in these ports and tubes. The buildup in the tubes can clog the tubes, block the ports or restrict exhaust flow. Moreover, the residue can become a major source of particle contamination, especially as it dries and delaminates. Defects that commonly occur on substrate surfaces result from particles that originate from exhaust ducts. As a result, these ports and tubes are cleaned regularly. When such exhaust systems are cleaned, they must therefore be thoroughly and completely cleaned so as to remove all particles and prevent the particles from becoming disgorged back into the main processing, i.e. coating, chamber of the processing system where they can contaminate devices and ruin device functionality. The cleaning process itself must be carried out in a manner that does not generate particles.
Conventional cleaning methods are carried out using brushes such as bottle-brushes, i.e. long, cylindrical brushes with brittle bristles designed to extend into and clean bottles. These bottle-brushes are inserted into the exhaust ports and used to dislodge and remove particles. When this occurs, however, many particles that become generated or dislodged from the residue formed in the exhaust port, are spread throughout the coating chamber and eventually find their way onto substrate surfaces. This re-introduction of particles back into the coating, i.e. processing chamber during the cleaning procedure, must be eliminated.
The disclosure is best understood from the following detailed description when read in conjunction with the accompanying drawing. It is emphasized that, according to common practice, the various features of the drawing are not necessarily to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Like numerals denote like features throughout the specification and drawing.
The disclosure provides a brush or other cleaning member or device that is turbine-powered. A multi-rotor turbine assembly is affixed within a tube or hose that is coupled to an air pump such as a vacuum system. The fluid flow causes the rotors and thus the shaft of the turbine assembly to rotate. The head of the brush or other cleaning member is affixed to the shaft and rotates along with the shaft and the bristles or other cleaning media extend outwardly due to centrifugal force, dislodging particles which are sucked into the tube through an annular opening at the end of the tube due to the vacuum action.
In one exemplary embodiment, diameter 24 of tube 12 may be 1 inch, but in other exemplary embodiments, diameter 24 may range from 0.25 inches to 4 or 5 inches. Tube 12 includes first end 28 and a second end coupled to a vacuum source, air pump, or other source that causes fluid flow as indicated by fluid flow arrow 32 at vacuum source end 30. In one exemplary embodiment, tube 12 may be several feet long and vacuum source end 30 is coupled to a vacuum source. In one exemplary embodiment, vacuum source end 30 may represent that tube 12 includes a length of about 8 inches to about 24 inches and may be attachable, using any of various mechanical means such as threads, to a conventional vacuum hose such as a clean room vacuum hose. The vacuum source may be a clean room vacuum system such as an exemplary clean room vacuum system manufactured by Nilfisk CFM of Malvern, Pa. but other suitable clean room or other vacuum systems may be used as well.
Various air pumps or vacuum systems may be used to produce fluid flow which may advantageously be air flow such as flow of the clean room air. Various suitable clean room vacuum systems or other commercially available vacuum sources may be used. Fluid flow using commercially available vacuum sources may range from about 50-300 cubic feet per minute, but other fluid flow values may be attained using other vacuum sources and may be used in other exemplary embodiments.
Turbine assembly 16 includes a plurality of rotors 36 that cause shaft 38 to rotate when rotors 36 rotate due to fluid flow as indicated by fluid flow arrow 32. Fluid flow 32 created by the vacuum source can be used to cause the rotary motion of rotors 36 and shaft 38 at speeds of 15,000 RPM or greater in one exemplary embodiment. Rotors 36 may be formed of thin-gauge anodized steel or other suitable rigid material such as other metals and the number of illustrated rotors—five—is intended to be exemplary only. Shaft 38 may be formed of steel or other metals or various other suitable non-deformable and rigid materials in various exemplary embodiments.
Shaft 38 extends through support sleeve 40 and within chuck 42 and is coupled to head 14 such that, when shaft 38 rotates, head 14 also rotates. Support sleeve 40 is centrally and fixedly coupled to tube 12 by means of mounting screws 44 and alignment screws 46 in the exemplary embodiment, but other suitable coupling means may be used in other exemplary embodiments. In various other exemplary embodiments, such as one that will be shown in
Head 14 may be formed of Teflon or other suitable non-corrosive materials. Bristles 62 may be formed of stainless steel, Kevlar, nylon or other similar materials, or other suitable materials. In the illustrated embodiment, it can be seen that there are two axially spaced rows of bristles 62. According to one exemplary embodiment, bristles 62 may include bristles formed of two or more different materials such as the aforementioned materials. In one exemplary embodiment, one of the rows of bristles 62 may be formed of one material and another of the rows of bristles 62 may be formed of a further material. Bristles 62 extend outwardly due to centrifugal force when shaft 38 and head 14 rotate. Bristles 62 may be secured to head 14 by an o-ring 66 received within a corresponding channel that extends around the periphery of head 14. Other bristle arrangements may be used in other exemplary embodiments. According to one exemplary embodiment, only one row of bristles that extends peripherally around head 14 to form a row that is substantially orthogonal to shaft 38, may be used and may include bristles formed of two or more different materials. Balancing set screws 64 or other suitable means may be used to properly balance head 14.
Tube 12 may be rigid or flexible according to various exemplary embodiments and may be stabilized by flanges 68 that extend circumferentially around tube 12, contacting outer surface 22. Wall fenders 70 may be o-rings or other pliable materials that extend around flanges 68 and may be received within a corresponding channel 72 of flange 68. Wall fenders 70 and flanges 68 are also shown in cut-away cross-sectional view. Laminar flow vanes 76 may be included within tube 12 to stabilize tube 12 and guide fluid flow 32. Laminar flow vanes 76 may be formed of poly-carbonate, Lexan® or other suitable materials and may advantageously maintain fluid flow in a laminar state.
Fluid flow is indicated by fluid flow arrow 32 and is a result of tube 12 being coupled to a vacuum source, air pump or other fluid flow source. According to the illustrated embodiment, head 14 includes bristles 62 and further bristles 84, either or both of which may be formed of stainless steel, nylon, Kevlar®, combinations thereof, or other suitable materials. Centrifugal force causes each of the aforementioned bristles to extend outwardly and rotate, dislodging particles 88 from residue 80 within duct 80. Fluid flow 32 causes the turbine (not shown in
According to one aspect of the disclosure, a cleaning apparatus is provided. The cleaning apparatus comprises a tube having a first end coupled to an air pump and a rotatable cleaning device disposed at a second end, the rotatable cleaning device including a turbine with an axial shaft protruding from the second end, a rotatable head coupled to the shaft at the second end, and, bristles extending outwardly from the rotatable head.
According to another aspect, the disclosure provides a vacuum-powered brush. The vacuum-powered brush comprises a vacuum system and a vacuum hose having a first end coupled to the vacuum system. The vacuum-powered brush further comprises a rotatable brush disposed at a second end of the vacuum tube, the rotatable brush including a turbine with an axial shaft that protrudes from the second end of the tube and a plurality of rotor blades disposed within the hose and a rotatable brush head coupled to the shaft at the second end.
According to another aspect, the disclosure provides a cleaning apparatus comprising a tube having a first end coupled to an air pump and a rotatable cleaning device disposed at a second end. The rotatable cleaning device comprises a turbine with an axial shaft protruding from the second end, a head fixedly coupled to the shaft at the second end and a cleaning member coupled to and extending peripherally from the head. The cleaning member includes at least one of a scouring pad material formed of intertwined mesh and a compressible porous material.
The preceding merely illustrates the principles of the disclosure. It will thus be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the disclosure and are included within its spirit and scope. For example, in addition to the embodiments recited, the disclosure also covers various other combinations of the disclosed features. Each of the following claims of this document constitutes a separate embodiment, and embodiments that combine different claims and/or different embodiments are within the scope of the disclosure and will be apparent to those of ordinary skill in the art after reviewing this document.
Furthermore, all examples and conditional language recited herein are principally intended expressly to be only for pedagogical purposes and to aid the reader in understanding the principles of the disclosure and the concepts contributed to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
This description of the exemplary embodiments is intended to be read in connection with the figures of the accompanying drawing, which are to be considered part of the entire written description. In the description, relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description and do not require that the apparatus be constructed or operated in a particular orientation. Terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
Although the disclosure has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the disclosure, which may be made by those skilled in the art without departing from the scope and range of equivalents.