Turbine pump

Information

  • Patent Grant
  • 6729841
  • Patent Number
    6,729,841
  • Date Filed
    Thursday, March 28, 2002
    23 years ago
  • Date Issued
    Tuesday, May 4, 2004
    20 years ago
Abstract
A turbine pump includes a casing having an inlet, an outlet and front and rear arc-shaped pump passages and an impeller. The impeller has plural impeller partitions respectively disposed between every two of the blades thereby forming impeller grooves at front and rear sides of the partitions and an outer ring at the peripheral edge of the blades. Each impeller groove, each of pump passage and the outer ring form a space for circulating fuel. The outside diameter of the impeller is smaller than the pump passages so that the impeller does not contact the pump passages.
Description




CROSS REFERENCE TO RELATED APPLICATION




The present application is based on and claims priority from Japanese Patent Applications 2001-97181, filed Mar. 29, 2001 and 2002-27949, filed Feb. 5, 2002, the contents of which are incorporated herein by reference.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a turbine pump that is suitable to a fuel pump to be mounted in a fuel tank of an automotive vehicle.




2. Description of the Related Art




U.S. Pat. No. 5,468,119 or its corresponding publication JP-A-299983 discloses a turbine pump or peripheral pump for a fuel pump to be mounted in an automotive vehicle. The disclosed turbine pump has an outer ring at the circumference of an impeller, which is disposed in chamber walls or a pump casing. The outer ring is disposed outside the spaces (hereinafter referred to the impeller grooves) between blades of the impeller in the radial direction. The outer ring, which is disposed around the impeller grooves, has axial end surfaces flush with the axial end surfaces of the blades. The outside diameter of the impeller is larger than the outside diameter of a pump passage that is formed in the casing and the outer ring is located close to the axial end surface of the pump casing.




In such a turbine pump, the axial distance between the impeller and the casing is arranged to be between several micrometers (μm) and tens of micrometers to prevent high-pressure fuel from leaking from the outlet side of the pump to the inlet side thereof.




While the turbine pump is operating, the impeller moves in the axial direction due to the reaction of the pumping operation. Accordingly, the axial end surface of the outer ring of the impeller contacts the peripheral end surface of the casing.




Because the outer ring is located at the outermost portion of the impeller, the circumferential speed is so high that the outer ring is subject to wear, which lowers pumping capacity and the lifetime thereof.




SUMMARY OF THE INVENTION




Therefore, the present invention has been made in view of the above problems.




It is a main object of the invention to provide a reliable turbine pump which prevents the outer ring from wearing.




According to a main feature of the invention, an impeller of a turbine pump has a plurality of blades disposed in the circumferential direction thereof, a plurality of impeller partitions respectively disposed between every two of the blades thereby forming a plurality of impeller grooves at front and rear sides of the partitions and an outer ring disposed at the peripheral edge of the blades. Each impeller groove, each pump passage and the outer ring form a circular space for circulating fuel thereby pressuring and discharging the fuel. The outside diameter of the impeller is smaller than the outside diameter of the pump passages. Therefore, the peripheral portion of the impeller is disposed within the pump passages where the impeller does not contact any surface of the pump passages. It is more preferable that the axial ends of the outer ring are positioned within axial ends of the blades. In addition, the outer ring may have axial ends that are tapered off in the radially inward direction.











BRIEF DESCRIPTION OF THE DRAWINGS




Other objects, features and characteristics of the present invention as well as the functions of related parts of the present invention will become clear from a study of the following detailed description, the appended claims and the drawings. In the drawings:





FIG. 1

is a partially cross-sectional side view of a turbine pump according to a first embodiment of the invention;





FIG. 2

is a fragmentary enlarged cross-sectional side view of a portion of the turbine pump shown in

FIG. 1

encircled by circle II;





FIG. 3

is cross sectional view of a portion of the turbine pump shown in

FIG. 1

cut along line III—III;





FIG. 4

is a fragmentary enlarged perspective view of a portion of the turbine pump shown in

FIG. 3

encircled by circle IV;





FIG. 5

is a fragmentary cross-sectional view of an impeller of a turbine pump according to a second embodiment of the invention;





FIG. 6

is a fragmentary cross-sectional view of an impeller of a turbine pump according to a third embodiment of the invention; and





FIG. 7

is a fragmentary cross-sectional view of an impeller of a turbine pump according to a fourth embodiment of the invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




A turbine pump according to a first embodiment of the invention to be mounted in a fuel tank for an engine (not shown) is described with reference to

FIGS. 1-4

.




As shown in

FIG. 1

, a turbine pump


1


according to a first embodiment of the invention is mounted in a fuel pump


100


together with a drive motor (not shown), which are covered by a housing


101


. The fuel pump includes, besides the drive motor, a motor shaft


102


, an electric connector


103


, a fuel chamber


104


, a fuel discharge pipe


105


and a fuel intake pipe


4




a


. When electric power is supplied to the fuel pump


100


via the connector


103


, the turbine pump


1


pumps up fuel in a fuel tank from an intake pipe


4




a


and discharges the fuel from the turbine pump into the fuel chamber


104


. Thereafter, the fuel is supplied to an engine via the fuel discharge pipe


105


. The fuel chamber


104


is provided inside the drive motor.




The turbine pump


1


is comprised of a pump casing


2


, an impeller


3


, and a pump cover


4


. The impeller


3


is rotatably disposed between the pump casing


2


and the pump cover


4


.




The pump casing


2


is made of aluminum die-cast or strong resinous material that is resistant to fuel and has a cylindrical space


2




a


that accommodates the impeller


3


. The axial depth of cylindrical space


2




a


is a distance between several micrometers (μm) and tens of micrometers longer than the thickness of the impeller


3


. In other words, the gap between the pump cover


4


and the impeller is the same as the gap between the pump casing


2


and the impeller


3


. As shown in

FIGS. 2 and 3

, a pump passage


2




b


is formed to be coaxial with the cylindrical space


2




a


. The pump passage


2




b


is connected to the inlet


4




c


at an end thereof and connected to the outlet


2




c


at the other end thereof. In the meantime, the inlet


4




c


is indicated in

FIG. 3

by one-dot-chain line for reference. As shown in

FIG. 2

, radially outermost surface


2




bl


of the pump passage


2




bl


is included in the inner surface


2




al


of the cylindrical space


2




a


. In other words, the outside diameter of the pump passage


2




b


is the same as the inside diameter D


2


of the cylindrical space


2




a


. A plurality of blades


3




a


is formed at the axial end surface


3




g


of the impeller


3


. The radial distance between the outside diameter D


1


of the impeller


3


and the inside diameter D


2


of the cylindrical space


2




a


is designed to be the best for pump performance. That is, the outside diameter D


1


of the impeller


3


is designed to be smaller than the outside diameter of the pump passage


2




b


. Accordingly, the portion of the impeller


3


whose circumferential speed is the maximum while the impeller rotates does not contact the surface of the pump passage


2




b


or any other portion of the pump casing


2


. The pump casing


2


has a bearing


5


that rotatably supports a motor shaft


102


at the center thereof.




The impeller


3


is made of heat resistant resinous material and is disposed in the cylindrical space


2




a


of the pump casing


2


. As shown in

FIG. 3

, the impeller


3


has a plurality of blades


3




a


formed at both the peripheral front surface that faces the pump casing


2


and the peripheral rear surface that faces the pump cover


4


. The blades


3




a


formed at the front surface and the blades formed at the rear surface are disposed side by side at equal intervals in the circumferential direction. An impeller groove


3




b


is formed between each adjacent two blades


3




a


. As shown in

FIG. 2

, impeller partitions


3




d


are disposed at an axially middle and radially inside portion thereof to protrude radially outward to divide each of the impeller grooves


3




b


into a front side groove and a rear side groove. Thus, the fuel introduced in the space (hereinafter referred to as the circular space) defined by the impeller grooves


3




b


, the pump passage


2




b


of the pump casing


2


and a pump passage


4




b


of the pump cover


4


is circulated and pressured by the impeller


3


. An outer ring


3




c


is integrated with the plurality of blades


3




a


to connect the same at the edges thereof. In other words, the outer ring


3




c


closes the circumference of the impeller


3


. The axial ends of the outer ring


3




c


are positioned within the axial ends of the impeller


3


. The outer ring


3




c


has a trapezoidal cross section with the shorter side being radially inward, as shown in FIG.


2


. That is, the axial length of a portion of the outer ring


3




c


becomes longer as it shifts radially outward. In other words, the outer ring


3




c


has axial end surfaces


3




f


that taper off in the radially inward direction.




While the turbine pump is operating, fuel circulates in the circular spaces defined by the impeller grooves


3




b


and the pump passages


2




b


and


4




b


as indicated by arrows in FIG.


2


. The above arrangement of the outer ring


3




c


is effective to smooth circulation of the fuel.




The impeller


3


has a semicircular center hole


3




e


, to which the motor shaft


102


is fitted to rotate the impeller


3


.




The pump cover


4


is also made of aluminum die-cast or strong resinous material that is resistant to fuel. The pump passage


4




b


is formed at the portion of the pump cover


4


opposite the pump passage


2




b


to enclose the blades


3




a


of the impeller


3


. In other words, the outside diameter D


1


of the impeller


3


or the outer ring


3




c


is smaller than the outside diameter D


2


of the pump passage


4




b


. Therefore, the outer ring


3




c


, whose circumference speed is larger than other portions of the impeller


3


, is disposed within the pump passage


4




b


and do not contact the surface of the pump passage


4




b


or other surface of the pump cover


4


while the impeller


3


is rotating. Accordingly, the impeller


3


is not subject to wear. On the other hand, the axial end of the blades


3




a


contact the surfaces of the casing


2


and the pump cover


4


opposite the blades


3




a


to seal the portion between the outlet


2




c


and the inlet


4




c


. The inlet


4




c


is formed in the pump cover


4


to connect the pump passages


2




b


and


4




b.






The fuel pump


100


is assembled in the following manner.




A drive motor, a motor drive unit and the connector


103


are assembled into the housing


101


and electrically connected at first. Next, the turbine pump


1


is inserted into the housing


101


. Then, the pump casing


2


is force-fitted to the housing


101


, and the motor shaft


102


is fitted to the bearing


5


as shown in FIG.


1


. Thereafter, the impeller


3


is inserted into the cylindrical space


2




a


of the pump casing


2


, and the motor shaft


102


is inserted into the center hole


3




e


. Next, the pump cover


3


is positioned relative to the pump casing


2


and force-fitted into the housing


101


. Finally, the edge portion of the housing


101


is clamped to fix the turbine pump


1


.




When the impeller


3


is rotated by the motor in the direction indicated by an arrow in

FIG. 3

, fuel is pumped up from the intake pipe


4




a


and introduced into the circular space via the inlet


4




c


. The fuel in the impeller grooves


3




b


is circulated in the circular space defined by the impeller grooves


3




b


and the pump passages


2




b


and


4




b


. In other words, the fuel is moved radially outward by centrifugal force due to the rotation, turned by the outer ring


3




c


and introduced into the pump passage


2




b


, as indicated by arrows in FIG.


2


. The fuel is further guided by the inner surface of the pump passage


2




b


, moved in the rotation direction of the impeller


3


and introduced into the impeller grooves


2




b


. Thereafter, the fuel is moved radially outward again by the centrifugal force, turned by the outer ring


3




c


and introduced into the pump passage


2




b


. Thus, the fuel is repeatedly moved and circulated to increase the pressure thereof before it is discharged from the fuel outlet


2




c


. The fuel in the pump passage


4




b


is moved and circulated in the same manner as described above and shown in

FIG. 2

, so that two symmetrical pressuring motions of the fuel are set up in the turbine pump


1


.




A turbine pump according to a second embodiment of the invention is described with reference to FIG.


5


. In the meantime, the same reference numeral represents the same or substantially the same portion, part or components as the first embodiment hereafter.




The outer ring


3




c


is positioned so that the axial ends thereof are located within the axial ends of the impeller


3


. However, the axial end surfaces


3




f


of the outer ring


3




c


are not tapered off but are parallel to the axial end surfaces of the impeller.




A turbine pump according to a third embodiment of the invention is described with reference to FIG.


6


.




The outer ring


3




c


has axial end surfaces


3




f


that taper off in the radially inward direction. However, the outer ring


3




c


has the same axial length as the impeller


3


and is positioned so that the axial ends thereof are located to be flush the axial ends of the impeller


3


.




A turbine pump according to a fourth embodiment of the invention is described with reference to FIG.


7


.




The outer ring


3




c


and the impeller grooves


3




b


are formed by a circular or cylindrical surface to be continuous so that the axial ends of the outer ring


3




c


can be positioned outside the axially innermost portion


3




dl


of the impeller partitions


3




d


. The impeller grooves


3




b


are alternately formed on the front and rear surfaces of the impeller in the circumferential direction. Therefore, there is no space or opening between the outer ring


3




c


and the impeller partitions


3




d


. Because the outer ring


3




c


and the impeller partitions


3




d


formed by a cylindrical surface to be continuous, the fuel can circulate more smoothly.




In this embodiment, the axial end of the outer ring


3




c


can be tapered as the outer ring


3




c


shown in FIG.


2


.




In the foregoing description of the present invention, the invention has been disclosed with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made to the specific embodiments of the present invention without departing from the scope of the invention as set forth in the appended claims. Accordingly, the description of the present invention is to be regarded in an illustrative, rather than a restrictive, sense.



Claims
  • 1. A turbine pump comprising:a casing having an inlet, an outlet and front and rear arc-shaped pump passages; an impeller disposed in said casing, said impeller having a plurality of blades disposed in the circumferential direction thereof, a plurality of impeller partitions respectively disposed between every two of said blades thereby forming a plurality of impeller grooves at front and rear sides of said partitions and an outer ring disposed at a peripheral edge of said blades and radially more outside than an axially innermost portion of said impeller grooves to connect said blades all together; wherein each of said impeller grooves, each of said pump passages and said outer ring form a space for circulating fuel pumped up from said inlet thereby pressuring and discharging said fuel from said outlet; wherein the outside diameter of said impeller is smaller than the outside diameter of said pump passages so that peripheral portion of said impeller is disposed within said pump passages; and wherein said outer ring has a trapezoidal cross section with a shorter side thereof being radially inward.
  • 2. The turbine pump as claimed in claim 1, whereinaxial ends of said outer ring are positioned within axial ends of said plurality of blades.
  • 3. A turbine pump comprising:a pump cover having a fuel inlet, an arc-shaped front pump passage; a pump casing having a fuel outlet and an arc-shaped rear pump passage; and an impeller disposed between said pump cover and said pump casing, said impeller having a plurality of blades disposed in the circumferential direction thereof, a plurality of impeller grooves between each two of said blades and an outer ring disposed at a peripheral edge of said blades for closing circumference of said blades, thereby forming circular spaces together with said impeller grooves, said pump passages for circulating fuel pumped up from said inlet thereby pressuring and discharging said fuel from said outlet; wherein the outside diameter of said impeller is smaller than the outside diameter of said pump passages so that peripheral portions of said impeller is located within said front and rear pump passages and wherein said outer ring has a trapezoidal cross section with a shorter side thereof being radially inward.
  • 4. A turbine pump comprising:a pump cover having a fuel inlet, an arc-shaped front pump passage, said front pump passage has an outside diameter (D2); a pump casing having a cylindrical space and a fuel outlet and an arc-shaped rear pump passage, said rear pump passage having the same outside diameter as said front passage and the inside diameter of said cylindrical space; and an impeller disposed within said cylindrical space between said pump cover and said pump casing, said impeller having a plurality of blades disposed in the circumferential direction thereof, a plurality of impeller grooves between each two of said blades and an outer ring disposed at a peripheral edge of said blades for closing circumference of said blades, thereby forming circular spaces together with said impeller grooves, said pump passages for circulating fuel pumped up from said inlet thereby pressuring and discharging said fuel from said outlet; wherein the outside diameter (D1) of said impeller is smaller than the outside diameter (D2) of said front and rear pump passages so that peripheral portions of said impeller is located within said front and rear pump and wherein said outer ring has a trapezoidal cross section with a shorter side thereof being radially inward.
  • 5. A turbine pump comprising:a casing having a fuel inlet, a fuel outlet, a cylindrical space, an arc-shaped front pump passage, and an arc-shaped rear pump passage, said front and rear pump passage having an outside diameter; and an impeller disposed within said cylindrical space between said front pump passage and rear pump passage, said impeller having a plurality of blades disposed in the circumferential direction thereof, a plurality of impeller grooves between each two of said blades and an outer ring disposed at a peripheral edge of said blades for closing circumference of said blades, thereby forming circular spaces together with said impeller grooves, said pump passages for circulating fuel pumped up from said inlet thereby pressuring and discharging said fuel from said outlet; wherein said impeller has a smaller outside diameter then the outside diameter of said front and rear pump passages so that peripheral portions of said impeller is located opposite said front and rear pump and wherein said outer ring has a trapezoidal cross section with a shorter side thereof being radially inward.
  • 6. The turbine pump as claimed in claim 5, wherein axial ends of said outer ring are positioned within axial ends of said plurality of blades.
Priority Claims (2)
Number Date Country Kind
2001-097181 Mar 2001 JP
2002-027949 Feb 2002 JP
US Referenced Citations (7)
Number Name Date Kind
5017086 Hansen May 1991 A
5310308 Yu et al. May 1994 A
5468119 Huebel et al. Nov 1995 A
5702229 Moss et al. Dec 1997 A
5961276 Huebel et al. Oct 1999 A
6174128 Yu Jan 2001 B1
6464450 Fischer Oct 2002 B1
Foreign Referenced Citations (3)
Number Date Country
8-277793 Oct 1996 JP
9-79168 Mar 1997 JP
9-79170 Mar 1997 JP