1. Field of the Invention
The present invention relates to turbine rotors of turbines for industrial applications and a gas turbine having the turbine rotors.
2. Description of Related Art
The present invention is applied to turbines for industrial applications including a gas turbine and a steam turbine. Hereinafter, a description will be given of an example in which the turbine rotor of the present invention is applied to the gas turbine.
First,
In general, a turbine rotor is connected with a compressor rotor through an intermediate shaft for connecting both axes, such that they are driven coaxially trough the coaxial axis and driven coaxially.
The compressor rotor and the turbine rotor are both an assembly of rotor discs constituted by stacking disc-like rotor discs inline with an axial line direction of the rotor and fixing them by a bolt. That is, in the compressor rotor, respective blades of the disc-like rotor discs are mounted in a radial direction on the outer circumference and stacked in the axial direction of the rotor, and each of the rotor discs is integrally fixed by a spindle bolt that penetrates through the axial direction of the rotor. This structure is also the same as that in the turbine rotor. The structure is found not only in a rotor for the gas turbine but also in a rotor for the steam turbine.
As shown in
Further, a plurality of grooves 33, the cross section of which is semi-circular, are formed on the top face 55 of the projected portion 52 at which the respective rotor discs 50 are in press contact with each other. At the time of assembling a turbine rotor and when one rotor discs is in contact with the adjacent rotor disc, the center of the groove 33 formed on the top face 55 in the radial direction of the projected portion 52 of one rotor disc 50 is aligned with the center of the other groove 33 formed on the top face 55 of the projected portion 52 of the other adjacent rotor disc 50, a cylindrical hole 35 penetrating through the top face 55 is formed in the radial direction by two projected portions 52 of a pair of top faces 55 which is in press contact with each other.
When the turbine rotor is assembled, a columnar torque pin 40 is inserted into the cylindrical hole 35. The torque pin 40 has functions to prevent adjacent rotor discs 50 from being disengaged in the rotational direction and the torque pin has a role to transfer a rotational torque from one rotor disc 50 to another adjacent rotor disc 50.
The torque pin 40 is provided with a cylindrical main body 41 and flanges 42, 43 attached on both ends of the main body 41 and the diameter of the torque pin 40 is greater than that of the main body 41. The flange 42 is arranged at the center of the rotor disc 50 to prevent the torque pin 40 from coming off in the radial direction due to centrifugal forces during operation. The flange 43 which is arranged on the outer circumference of the rotor disc 50, is to prevent the torque pin 40 from dropping down due to its own weight when the operation of the rotor is terminated.
Further, when an additional torque is applied to the turbine rotor 1 from one end thereof, the rotor blade assembly absorbs the torque corresponding to the additional load. In a case that the load is a generator, a torque which is several times higher than a rated load, is applied, and since a load (for example, a generator) is connected to the other end of the turbine rotor 1, the load must be absorbed by friction of top faces 55 of the rotor disc 50 and the torque pin 40.
It is necessary that all the torque pins 40 are fitted into the cylindrical holes 35 leaving no space. Therefore, after a plurality of rotor discs 50 are stacked and fastened by the spindle bolt 60 to fix the rotor discs 50 integrally, it is necessary to form a plurality of cylindrical holes 35 for connecting rotor discs for stabilization of respective rotor discs. Each cylindrical hole is formed extending two top face of the two top faces of a pair of projected portions 52 of a pair of adjacent rotor discs, the top faces 55 of the pair of adjacent rotor discs are in press contact with each other. Japanese Unexamined Patent Application No. 2001-3702 has disclosed in a specific manner an example of the above-described rotor disc.
However, in order to insert the torque pins 40 into the cylindrical holes 35 after formation of the cylindrical holes 35, it is necessary to disassemble a rotor which has been once assembled. In other words, the rotor is disassembled to separate adjacent rotor discs 50, to thereby the torque pins 40 are inserted into the grooves 33. Thereafter, the rotor discs 50 are again assembled and fastened by the spindle bolt 60, in order to integrate the rotor discs 50 into a single unit. As described above, the turbine rotor has to be disassembled and has to be reassembled, thus the assembly operation was complicated.
According to the invention disclosed in U.S. Pat. No. 6,287,079, as shown in
Specifically, circular holes 81 are formed at both projected portions of the rotor disc 50 on which the top faces 55 are pressed against each other, and the torque pins 70 are attached into the circular holes 81. A cam 72 attached to a main body 71 of the torque pin 70 is rocked at the center of a pivot pin 73 by pressing a dump bolt 74 and fitted into a groove 82 disposed on the circular hole 81 drilled on the rotor disc side. As a result, the rotor disc 50 and the torque pin 70 are kept engaged via the cam 72 and will not fall out even if a centrifugal force acts on the torque pin 70.
However, it is difficult to carry out machining operation for the above-described complicated structure. For example, It is necessary to drill a circular hole through an assembled structure, in which a plurality of the rotor discs 50 are fixed integrally and thereafter, to form the groove 82 in the small inner wall face inside the circular hole 81. It is quite difficult and also time-consuming to form the groove as described above. Further, in a structure in which the cam 72 rotates around the center of the pivot pin 73, the cam is likely to be heated and stacked by a high temperature atmosphere and may become made unworkable within a short time. It is, therefore, not always possible to guarantee the reliable operation.
An object of the present invention is to provide turbine rotors and a turbine in which the two-time assembly work of the turbine rotors can be avoided to greatly reduce the number of man-hours necessary for assembly. Another object of the present invention is to provide a structure which reduces the number of components and the number of steps in processing, and the number of man-hours necessary for assembly of turbine rotors, as well as to be capable of securing the operation, as compared with the invention disclosed in U.S. Pat. No. 6,287,079.
The turbine rotor of the present invention is provided with a torque transfer section disposed between any adjacent rotor discs, among a plurality of rotor-discs stacked in the axial line direction, with the centers in alignment with each other, and fixed integrally, thereby transferring torque from one rotor disc to another rotor disc. The turbine rotor is provided with a first contact surface which is formed on a first rotor disc facing a second rotor disc; a plurality of first grooves arranged on the first contact face so as to be separated from each other along the circumferential direction of the first rotor disc, formed individually in the radial direction of the first rotor disc and have a semi-circle cross-section orthogonal to the radial direction; a second contact surface which is formed on the second rotor disc adjacent to the contact face the first rotor disc; a plurality of second grooves which are arranged on the second contact face so as to separate from each other along the circumferential direction of the second rotor disc formed individually in the radial direction of the second rotor disc, and have a semi-circle cross-section orthogonal to the radial direction; a plurality of torque pins which are inserted into a plurality of cylindrical holes, one of which is formed by a pair of first and second contact faces when the first rotor disc is in contact with the second rotor disc; and a binary flange-receiving plane which is formed on the outer circumferences of the adjacent first and second rotor discs along the circumferential direction. A torque pin is consisted of a columnar main body and a flange having a long side and a short side and the flange is joined to the main body. The length of the long side of the flange is greater than the width of the binary flange receiving plane, while the length of the short side is smaller than the width of the binary flange receiving plane. A flange receiving recessed portions of the binary flange receiving plane are capable of receiving the arc-shaped edge of the long side are formed respectively on the two side faces of the binary flange receiving plane which face each other.
According to the turbine rotor of the present invention, a torque pin is inserted into a cylindrical hole formed by the binary flange receiving plane from outside of the rotor disc in a rotatable manner, so that the long side of the flange of the torque pin is inserted into the flange receiving recessed portion on the binary flange receiving plane surface, and the flange is engaged with the flange receiving recessed portion. The torque pin is then fixed to a rotor disc. Therefore, although the engaging structure is simple, the torque pin can be fitted to the assembled rotor. As a result, it is possible to avoid complicated assembly operations.
In the turbine rotor of the present invention, the flange is a plate approximately in a circular shape which has two circular arc portions and two linear portions separated in parallel between two circular arc portions. The long side of the flange may include two circular arc portions at the both edges thereof, and the short sides on both sides of the long sides are formed by two circular arcs.
According to the turbine rotor of the present invention, the structure of the torque pin is simple. However, the torque pin is capable of assuring the reliable construction of the turbine rotor without falling into a danger of breakage.
In the turbine rotor of the present invention, each of the flange receiving recessed portions may be formed in an arc-shaped grooves and spacing between two flange receiving recessed portions facing each other intervening the centers of the cylindrical holes can be longer than the length between the two circular arc portions of the flange.
According to the turbine rotor of the present invention, when a groove as the flange receiving recessed portion is formed on the narrow binary flange receiving plane surface when two rotor discs are integrally fixed, it is possible to form a groove in any depth of groove, which is greater than a distance between the two circular arc portions of the flange. Thus, there is a degree of freedom in selecting tools. Accordingly, the groove as the flange receiving recessed portion can be formed easily.
In the turbine rotor of the present invention, the flange receiving recessed portion may be an annular groove where an axial center of the rotor disc is at the center thereof.
According to the turbine rotor of the present invention, the flange receiving recessed portion is a simple annular groove, that can be formed easily even on the narrow binary flange receiving plane face.
As the alternative example of the turbine rotor according to the present invention, it is possible to form a first projected portion on the outer circumference of the first rotor disc along the circumferential direction and to form a second projected portion on the outer circumference of the second rotor disc along the circumferential direction. It is also possible to form the binary flange receiving plane between the first projected portion and the second projected portion, and to form the flange receiving recessed portions respectively on a side face facing the second projected portion of the first projected portion and also on a side face of the second projected portion facing the first projected portion.
According to the turbine rotor of the present invention, since the binary flange receiving plane is formed between the first projected portion and the second protruded portion, it is possible to decrease the thickness of a rotor disc to be processed for machining the binary flange receiving planes, which results in decreasing the heat capacity of respective rotor discs and also decreasing the weight of respective rotor discs.
The turbine of the present invention is provided with the above-described turbine rotors. The turbine of the present invention is constituted by turbine rotors that can be assembled at reduced total man-hours, and that can be reliably driven.
An embodiment of the present invention will be described hereinafter with reference to the drawings. Only one embodiment of the present invention will be described hereinafter. However, the present invention shall not be limited to the embodiment described hereinafter. Further, the following embodiment includes components, which can be easily replaced by a person skilled in the art and which are substantially the same. Still further, the turbine rotor of the present invention is applicable to a rotor for a gas turbine and for a steam turbine.
Hereinafter, an embodiment of the present invention will be described by exemplifying a rotor for a gas turbine.
As shown in
The rotor 10 of the compressor and the turbine rotor 20 are both assembled rotors, which are assembled by stacking disc-shaped rotor-discs 50 in the axial direction and by binding the stacked rotor-discs with a through spindle bolt 60. That is, the compressor rotor 10 is composed of disc-like rotor discs 50, which comprises respective rotor blades 11 mounted in the radial direction on the outer circumference, are stacked in the axial direction of the rotor, and each of the rotor discs 50 is fixed integrally by the spindle bolt 60 penetrating through the axial direction of the rotor. This structure is also found in the turbine rotor 20. The structure is found not only in a rotor for a gas turbine but also in a rotor for a steam turbine. A gas turbine includes the above-described turbine rotor 1, together with a stator portion of the compressor, a stator portion of the turbine, and the combustor and the like.
Next, a structure of the rotor portion 10 of the compressor will be described hereinafter in detail. This structure is also applicable to the rotor portion 20 of the turbine. It is noted that, for a pair of adjacent rotor discs, a common reference symbol of “a” is affixed to one component in one pair of rotor discs, while a reference symbol of “b” is affixed to another rotor disc in the same pair of rotor discs.
The turbine rotors 1 of the present embodiment is provided with a plurality of torque transfer mechanisms, which is constituted by a binary flange receiving plane and a torque pin. The binary flange receiving plane for the torque transfer mechanism is provided between respective pairs of adjacent rotor discs 50 arranged at equal intervals in the circumferential direction, among a plurality of the rotor discs 50 stacked and fastened in the axial direction of the rotor, with the centers in alignment with each other. The torque transfer mechanism is to transfer a torque from one rotor disc 50a to another rotor disc 50b (or from the rotor disc 50b to the rotor disc 50a).
Each of the torque transfer mechanisms comprises a torque pin and a binary flange receiving plane. The binary flange receiving plane is formed by one groove (first groove) 33a formed on a top face (first contact face) 55a of one rotor disc 50a facing the adjacent top face of the other rotor disc 50b, and by another groove (second groove) 33b formed on a top face (second contact face) 55b of the rotor disc 50b facing the rotor disc 50a, and the torque pin.400 is inserted into a cylindrical hole 35, that is, a binary flange receiving plane, formed by aligning the groove 33a with the groove 33b. Each of the grooves 33a, 33b has a semi-circular-shaped cross section.
Actually, after a plurality of the rotor discs 50 are stacked and fastened into a single unit, a plurality of cylindrical holes 35 are formed radially at the projected portions 52a, 52b on which the top faces 55a, 55b are pressed against each other. Accordingly, a plurality of binary flange receiving planes 35a are formed radially on the top faces 55a, 55b of mutually adjacent two rotor discs 50a, 50b.
As shown in
An annular plane 522a for receiving the flange of the torque pin is formed between in front of the flange receiving projected portion 521a and on the top face 55a along the outer circumference face of the rotor disc 50a. An annular plane 522b is also formed along the outer circumference face of the rotor disc 50b in front of the flange receiving projected portion 521b and on the top face 55b. When the top face 55a of the rotor disc 50a is brought into contact with the top face 55b of the rotor disc 50b, the plane 522a is connected with the plane 522b, so that a binary plane 522 having a width of Z is formed. The binary plane 522 is formed annularly on the outer circumference faces of the rotor discs 50a, 50b when the contact faces (top faces 55a, 55b) are brought into contact with each other. The width of Z of the binary plane 522 is at least greater than the hole diameter of the cylindrical hole 35.
An alternative of the above embodiment will be described hereinafter. It may be possible for outer-circumference side faces 54a, 54b to be flat faces in the direction of the rotor shaft la, without forming flange receiving recessed portions 521a, 521b in the binary rotor discs 50a, 50b. In this case, in order to form respective flange receiving recessed portions 523a, 523b near the top faces 55a, 55b, it is necessary to provide the projected portions 52a, 52b having a certain thickness (height in the radial direction) in the vicinity of the top faces 55a, 55b. However, since it is not necessary to form a projected portion with a certain thickness except for the portion to form the flange receiving recessed portions 523a, 523b, the thickness of the projected portions 52a, 52b can be decreased. Since the thickness of the projected portions 52a, 52b can be decreased, an advantage is obtained such that the weight of the rotor discs 50a, 50b can be reduced and the heat capacity of the rotor disc can be reduced.
Further, a groove-shaped flange receiving recessed portion 523a, which is capable of receiving the flange 402 of the torque pin 400, is formed on one side wall face 522-1a on one side of the binary flange receiving plane 522a, and a groove-shaped flange receiving recessed portion 523b, which is capable of receiving the flange 402 of the torque pin 400, is also formed on the other side wall face 522-1b on the binary flange receiving plane 522b. The side wall face 523-1a of the flange receiving recessed portion 523a is formed on the surface 522a so as to be concentric with the cylindrical hole 35 and formed in an arc shape having a diameter, which is slightly greater than the diameter (X) of the flange 402 of the torque pin 400. Furthermore, the side wall face 523-1b of the flange receiving recessed portion 523b is formed on the surface 522b to be concentric to the cylindrical hole 35, similar to the side wall face 523-1a of the flange receiving recessed portion 523a. Further, each of the flange receiving recessed portions 523a, 523b has a groove width capable of sufficiently receiving the flange 402 of the torque pin 400.
A specific description will be given by referring to FIG. 2B.
Further, the flange receiving recessed portions 523a, 523b may not necessarily be in a circular arc shape. As long as they do not interfere with the rotational track of the flange, they may be formed in other curved shapes or in a rectangular shape with a flat bottom. As described above, the degree of freedom in shape of a groove will allow a wider range of tools to be selected and used, thus making it possible to form the flange receiving groove more easily.
The shape of the torque pin 400 is shown in
The long side and the short side of the flange 402 will be described in more detail with reference to
Hereinafter, a process step for fitting the torque pin 400 to the turbine rotor 1 is described. First, after a plurality of rotor discs are stacked and fastened into a unit, cylindrical holes 35 are formed between a pair of projected portions 52a, 52b wherein the top faces 55a, 55b are pressed with each other. A pair of flange receiving recessed portions 523a, 523b are respectively formed on the side wall faces 522-1a, 522-1b of the binary flange receiving plane 522. The flange receiving recessed portion may be formed on each of the rotor discs before the rotor discs are assembled.
Next, the torque pin 400 is inserted into the cylindrical hole 35. At the time of inserting the torque pin 400, the linear portions 403, 404 constituting the long sides of the flange 402 must be maintained in parallel to the side wall faces 522-1a, 522-1b of the binary flange receiving plane 522. Since the width Y in between two short sides is smaller than the width Z of the binary flange receiving plane 522, it is possible to insert the torque pin 400 into the cylindrical hole 35 without interference of the flange 402 by the side wall faces 522-1a, 522-1b.
After the torque pin 400 is inserted until the lower face 407 of the flange 402 is in contact with the upper faces 522-2a, 522-2b of the binary flange receiving plane 522, the flange 402 is rotated by almost 90 degrees, so that the arc portions 405, 406 of the flange are inserted respectively into the flange receiving recessed portions 523a, 523b. After the torque pin 400 is held in both flange receiving recessed portions, a stopper pin (not illustrated) for stopping rotation of the flange is fitted into the flange 402, etc., so that the torque pin 400 is fixed to the cylindrical hole 35. After the rotor discs 50 are stacked and fixed into one unit by fitting the spindle bolt, then, as described above, the torque pin 400 is fixed to the cylindrical hole 35, and the turbine rotor is finally assembled.
In the above-described procedures, when the torque pin 400 is inserted into the cylindrical hole 35 and rotated by almost 90 degrees, the circular arc portions 405, 406 constituting the edges of the long side of the flange 402 are respectively inserted into the flange receiving recessed portions 523a, 523b and the flange 402 is engaged on the binary flange receiving plane 522. Therefore, the torque pin 400 will not drop down due by its own weight while the turbine is out of operation and the torque pin 400 will not fall out in the radial direction of the rotor disc due to centrifugal force acting on the torque pin 400 during operation.
Furthermore, the number of components of the rotor disc assembly of the present invention is far reduced than the number of components of the rotor disc according to U.S. Pat. No. 6,287,079. In addition, the rotor discs can be securely fastened by the use of the torque pin. Still further, the turbine rotor can be easily assembled and grooves such as flange receiving recessed portions can also be easily formed.
Next, another embodiment of the present invention is shown in
An exemplified variation of the torque pin 400 is shown in
Number | Name | Date | Kind |
---|---|---|---|
4832574 | Woodwell et al. | May 1989 | A |
6287079 | Gosling et al. | Sep 2001 | B1 |
6435831 | Ichiryu | Aug 2002 | B1 |
6499957 | Klingels et al. | Dec 2002 | B1 |
7390170 | Charrier et al. | Jun 2008 | B2 |
7661931 | Matheny | Feb 2010 | B1 |
7686571 | Matheny | Mar 2010 | B1 |
20040042896 | Akiyama et al. | Mar 2004 | A1 |
20040086377 | Proctor et al. | May 2004 | A1 |
20040170498 | Peterman et al. | Sep 2004 | A1 |
20070212192 | Shirk et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
2001-3702 | Jan 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20100054943 A1 | Mar 2010 | US |