The present invention is directed to turbine shroud assemblies. More particularly, the present invention is directed to turbine shroud assemblies wherein the shroud dampening pin is driven by a pressurized fluid.
Hot gas path components of gas turbines are subjected to high air loads and high acoustic loads during operation which, combined with the elevated temperatures and harsh environments, may damage the components over time. Both metal and ceramic matrix composite (“CMC”) components may be vulnerable to such damage, although CMC components are typically regarded as being more susceptible than metallic counterparts, particularly where CMC components are adjacent to metallic components.
Damage from air loads and acoustic loads may be pronounced in certain components, such as turbine shrouds, which include a hot gas path-facing sub-component which is not fully secured to, but in contact with, a non-hot gas path-facing sub-component. By way of example, due to air loads and acoustic loads, the inner shroud of a turbine shroud assembly may vibrate against and be damaged by the outer shroud during operation. Further, loading an inner shroud to dampen air loads and acoustic loads with a spring may be subject to spring failure under the operating conditions, particularly temperature, of gas turbines.
In an exemplary embodiment, a turbine shroud assembly includes an inner shroud, an outer shroud, a shroud dampening pin, and a biasing apparatus. The inner shroud is arranged to be disposed adjacent to a hot gas path. The outer shroud is adjacent to the inner shroud and arranged to be disposed distal from the hot gas path across the inner shroud, and includes a channel extending from an aperture adjacent to the inner shroud. The shroud dampening pin is disposed within the channel and in contact with the inner shroud, and includes a shaft, a contact surface, and a cap. The shaft is disposed within the channel. The contact surface is disposed at a first end of the shaft and extends through the aperture in contact with the inner shroud. The cap is disposed at a second end of the shaft distal from the first end of the shaft. The biasing apparatus is in contact with the cap, is driven by a pressurized fluid, and provides a biasing force away from the outer shroud along the shroud dampening pin to the inner shroud through the contact surface.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.
Provided are exemplary turbine shroud assemblies. Embodiments of the present disclosure, in comparison to articles not utilizing one or more features disclosed herein, decrease costs, improve mechanical properties, increase component life, decrease maintenance requirements, eliminate spring failure, or combinations thereof.
Referring to
The cap 120 may include an extraction interface 130. In one embodiment, the extraction interface 130 includes a bore 132. The bore 132 may be a threaded bore 134 or may include any suitable securing feature for a tool to exert a pulling force upon.
In one embodiment, the shaft 116 includes a circumferential relief groove 136 directly adjacent to the cap 120.
The inner shroud 102 may include any suitable material composition, including, but not limited to, CMCs, aluminum oxide-fiber-reinforced aluminum oxides (Ox/Ox), carbon-fiber-reinforced silicon carbides (C/SiC), silicon-carbide-fiber-reinforced silicon carbides (SiC/SiC), carbon-fiber-reinforced silicon nitrides (C/Si3N4), silicon-carbide-fiber-reinforced silicon nitrides (SiC/Si3N4), superalloys, nickel-based superalloys, cobalt-based superalloys, INCONEL 718, INCONEL X-750, cobalt L-605, or combinations thereof.
The outer shroud 104 may include any suitable material composition, including, but not limited to, iron alloys, steels, stainless steels, carbon steels, nickel alloys, superalloys, nickel-based superalloys, INCONEL 738, cobalt-based superalloys, or combinations thereof.
The shroud dampening pin 106 may include any suitable material composition, including, but not limited to, high alloy steels, CrMo steels, superalloys, nickel-based superalloys, cobalt-based superalloys, cobalt L-605, CRUCIBLE 422, INCONEL 718, INCONEL X-750, or combinations thereof.
As used herein, “high alloy steel” refers to a steel that, in additional to carbon, iron is alloyed with at least, by weight, about 4% additional elements, alternatively at least about 8% additional elements. Suitable additional elements include, but are not limited to, manganese, nickel, chromium, molybdenum, vanadium, silicon, boron, aluminum, cobalt, cerium, niobium, titanium, tungsten, tin, zinc, lead, and zirconium.
As used herein, “cobalt L-605” refers to an alloy including a composition, by weight, of about 20% chromium, about 10% nickel, about 15% tungsten, about 0.1% carbon, about 1.5% manganese, and a balance of cobalt. Cobalt L-605 is available from Special Metals Corporation, 3200 Riverside Drive, Huntington, W. Va. 25720.
As used herein, “CrMo steel” refers to a steel alloyed with at least chromium and molybdenum. In one embodiment, the CrMo steels are 41xx series steels as specified by the Society of Automotive Engineers.
As used herein, “CRUCIBLE 422” refers to an alloy including a composition, by weight, of about 11.5% chromium, about 1% molybdenum, about 0.23% carbon, about 0.75% manganese, about 0.35% silicon, about 0.8% nickel, about 0.25% vanadium, and a balance of iron. CRUCIBLE 422 is available from Crucible Industries LLC, 575 State Fair Boulevard, Solvay, N.Y., 13209.
As used herein, “INCONEL 718” refers to an alloy including a composition, by weight, of about 19% chromium, about 18.5% iron, about 3% molybdenum, about 3.6% niobium and tantalum, and a balance of nickel. INCONEL 718 is available from Special Metals Corporation, 3200 Riverside Drive, Huntington, W. Va. 25720.
As used herein, “INCONEL 738” refers to an alloy including a composition, by weight, of about 0.17% carbon, about 16% chromium, about 8.5% cobalt, about 1.75% molybdenum, about 2.6% tungsten, about 3.4% titanium, about 3.4% aluminum, about 0.1% zirconium, about 2% niobium, and a balance of nickel.
As used herein, “INCONEL X-750” refers to an alloy including a composition, by weight, of about 15.5% chromium, about 7% iron, about 2.5% titanium, about 0.7% aluminum, and about 0.5% niobium and tantalum, and a balance of nickel. INCONEL X-750 is available from Special Metals Corporation, 3200 Riverside Drive, Huntington, W. Va. 25720.
In one embodiment, the biasing force 128 is sufficient to dampen or eliminate contact and stresses between the inner shroud 102 and the outer shroud 104 generated by air loads and acoustic loads from the hot gas path 110 during operation.
The shroud dampening pin 106 may include an anti-rotation dampening tip 138 at the first end 122. In one embodiment, the inner shroud 102 includes an anti-rotation depression 140, the anti-rotation dampening tip 138 extends into the anti-rotation depression 140, and the anti-rotation dampening tip 138 mates non-rotatably with the anti-rotation depression 140. The anti-rotation dampening tip 138 may inhibit or eliminate circumferential motion of the inner shroud 102, rotation of the shroud dampening pin 106, or both.
The biasing apparatus 108 may be any suitable apparatus capable of providing the biasing force 128 through the shroud dampening pin 106 to the inner shroud 102. In one embodiment, the biasing apparatus 108 may be a springless biasing apparatus. As using herein, “springless” indicates the lack of a spring coil.
The pressurized fluid 126 may be supplied by any suitable source, including, but not limited to, a turbine compressor. The pressurized fluid 126 may include any suitable fluid, including, but not limited to, air. The pressurized fluid 126 may be maintained at a constant pressure during operation or may be adjustable during operation.
Referring to
Referring to
Referring to
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3864056 | Gabriel | Feb 1975 | A |
4072434 | Homuth | Feb 1978 | A |
6315519 | Bagepalli et al. | Nov 2001 | B1 |
6726448 | McGrath et al. | Apr 2004 | B2 |
6758653 | Morrison | Jul 2004 | B2 |
6942203 | Schroder | Sep 2005 | B2 |
8047773 | Bruce et al. | Nov 2011 | B2 |
8167546 | Shi et al. | May 2012 | B2 |
8272835 | Smith | Sep 2012 | B2 |
20090053050 | Bruce | Feb 2009 | A1 |
20160017743 | Duguay | Jan 2016 | A1 |
20170044923 | Roberts et al. | Feb 2017 | A1 |
20170051627 | Hafner et al. | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
1529926 | May 2005 | EP |
2299061 | Mar 2011 | EP |
Entry |
---|
Taxacher, et al: “Turbine Component” filed on Aug. 18, 2014 as U.S. Appl. No. 14/461,551 (unpublished application). |
Number | Date | Country | |
---|---|---|---|
20180363498 A1 | Dec 2018 | US |