None.
1. Field of the Invention
The present invention relates generally to a gas turbine engine, and more specifically to a turbine stator vane with an insert and a flexible or compliant seal.
2. Description of the Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98
In a gas turbine engine, such as a large frame heavy-duty industrial gas turbine (IGT) engine, a hot gas stream generated in a combustor is passed through a turbine to produce mechanical work. The turbine includes one or more rows or stages of stator vanes and rotor blades that react with the hot gas stream in a progressively decreasing temperature. The efficiency of the turbine—and therefore the engine—can be increased by passing a higher temperature gas stream into the turbine. However, the turbine inlet temperature is limited to the material properties of the turbine, especially the first stage vanes and blades, and an amount of cooling capability for these first stage airfoils.
Turbine stator vanes are often cooled using impingement cooling inserts because the stator vanes do not rotate and thus an insert can be used. high thermal stress occurs in first and even second stage stator vanes, and thus an insert would undergo relatively high movement within the cavity of the airfoil. A flexible seal can be used to maintain a seal even under these relatively large displacements between the insert and the airfoil. However, too much relative movement between the insert and the airfoil cavity would affect the seal performance.
A turbine stator vane with an impingement cooling insert, with a flexible seal used to provide for a seal between the insert and the cavity of the airfoil, and where seal slots include bumper surfaces to limit a range of relative movement between the insert and the airfoil cavity so that the flexible seal continues to maintain a good seal.
In one embodiment, an airfoil includes a rib forming a forward impingement cavity and an aft impingement cavity each having an impingement cooling insert located therein. Each insert and cavity includes a forward seal slot and an aft seal slot with a flexible seal secured therein. Each seal slot includes a chordwise movement bumper and a sideways movement bumper with a gap to allow for a range of movement of the insert within the cavity while the flexible seal still maintains a seal. The flexible seal is X-shaped with four contact points on the seal slots so that a relatively large but limited movement between the insert and the cavity can occur.
Another embodiment of the present invention includes a double impingement cooling insert having a pressure side surface and a suction side surface that forms a cooling air supply cavity, and where an arrangement of cross-over tubes connect return air holes on the pressure side of the insert to impingement holes on the suction side of the insert. Cooling air supplied to the supply cavity thus flows out through pressure side impingement holes to impinge on the pressure side surface of the airfoil, then flows through return air holes that are connected to the cross-over tubes. The cross-over tubes are connected to impingement cooling holes on the suction side of the insert for impingement cooling of the suction side wall of the airfoil. With the cross-over tubes, the impingement cooling holes can be made as close together as possible depending on the diameter of the cross-over tubes.
The present invention is a turbine stator vane, such as a large frame industrial engine turbine stator vane, with impingement cooling inserts secured within the airfoil and sealed using a flexible or compliant seal, where the seal slots have bumper surfaces between the insert and the airfoil inner wall that limit relative movement of the seal slots so that the flexible seal maintains an adequate seal between the two surfaces. The flexible seal used in the present invention is disclosed in U.S. Pat. No. 8,556,578 issued on Oct. 15, 2013 to Memmen et al. in which the entire patent is incorporated herein by reference. The flexible seal allows for a proper seal to be maintained between seal slots formed in the airfoil wall and the insert that will allow a large relative displacement where the prior art seals will not keep a seal. One major feature missing from the Memmen patent is structure to limit the relative movements of the seal slots for a single flexible seal. The present invention solves this problem.
Use of the cross-over tubes 27 in the insert allows for a lightweight double impingement insert to be formed. Also, using the cross-over tubes 27 will allow for the impingement cooling holes on both the pressure side and the suction side of the insert to be closely spaced. This limitation in how close the impingement holes can be located will depend on the diameter of the cross-over tubes 27. The multiple impingement insert with cross-over tubes 27 can also be manufactured using one of the additive manufacturing processes such as direct metal sintering, electron beam welding, or other 3D metal printing processes to produce a one-piece insert with the cross-over tubes. The impingement holes 29 can also be formed from the metal additive manufacturing process which will further reduce cost of manufacturing because EDM drilling of the holes is quite expensive.
The flexible seal 14 must maintain a seal between slots that have a large relative movement in order to prevent high pressure cooling air from crossing over the seal into the lower pressure cooling air and thus disrupt the series of impingement cooling from the pressure side to the suction side of the airfoil.
This application claims the benefit to U.S. Provisional Application 61/906,437 filed on Nov. 20, 2013 and entitled TURBINE STATOR VANE WITH INSERT AND FLEXIBLE SEAL.
Number | Date | Country | |
---|---|---|---|
61906437 | Nov 2013 | US |