The subject matter disclosed herein relates to gas turbine engines, and more particularly, to systems for exhausting combustion gases from gas turbine engines.
Gas turbine engines are used in a wide variety of applications, such as power generation, aircraft, and various machinery. Gas turbine engines generally combust a fuel with an oxidant (e.g., air) in a combustor section to generate hot combustion products, which then drive one or more turbine stages of a turbine section. In turn, the turbine section drives one or more compressor stages of a compressor section, thereby compressing oxidant for intake into the combustor section along with the fuel. Again, the fuel and oxidant mix in the combustor section, and then combust to produce the hot combustion products. These combustion products may include unburnt fuel, residual oxidant, and various emissions (e.g., nitrogen oxides) depending on the condition of combustion. Gas turbine engines typically consume a vast amount of air as the oxidant, and output a considerable amount of exhaust gas into the atmosphere. In other words, the exhaust gas is typically wasted as a byproduct of the gas turbine operation.
Certain embodiments commensurate in scope with the originally claimed invention are summarized below. These embodiments are not intended to limit the scope of the claimed invention, but rather these embodiments are intended only to provide a brief summary of possible forms of the invention. Indeed, the invention may encompass a variety of forms that may be similar to or different from the embodiments set forth below.
In one embodiment, a system includes a turbine combustor having a first volume configured to receive a combustion fluid and to direct the combustion fluid into a combustion chamber. The turbine combustor includes a second volume configured to receive a first flow of an exhaust gas and to direct the first flow of the exhaust gas into the combustion chamber. The turbine combustor also includes a third volume disposed axially downstream from the first volume and circumferentially about the second volume. The third volume is configured to receive a second flow of the exhaust gas and to direct the second flow of the exhaust gas out of the turbine combustor via an extraction outlet, and the third volume is isolated from the first volume and from the second volume.
In one embodiment, a system includes a turbine combustor having a housing, a liner defining a combustion chamber, and a flow sleeve disposed about the liner. The turbine combustor also includes a first volume disposed in a head end of the combustion chamber, wherein the first volume is configured to receive a combustion fluid and to provide the combustion fluid to the combustion chamber. The turbine combustor also includes a second volume disposed downstream of the first volume and defined between the flow sleeve and the housing. The second volume is configured to receive a first flow of recirculated combustion products and to direct the first flow of recirculated combustion products out of the combustor via an extraction conduit. A flange extends between the flow sleeve and the housing, and the flange is configured to block flow of the combustion fluid into the second volume and to block flow of the first flow of recirculated combustion products into the first volume.
In one embodiment, a method includes combusting an oxidant and a fuel in a combustion chamber of a turbine combustor to generate combustion products. The method also includes compressing at least some of the combustion products generated by the combustor to generate compressed combustion products. The method further includes cooling a liner of the turbine combustor using a first flow of the compressed combustion products and isolating a second flow of the compressed combustion products within the turbine combustor from the oxidant, the fuel, and the first flow of the compressed combustion products.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
Detailed example embodiments are disclosed herein. However, specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments. Embodiments of the present invention may, however, be embodied in many alternate forms, and should not be construed as limited to only the embodiments set forth herein.
Accordingly, while example embodiments are capable of various modifications and alternative forms, embodiments thereof are illustrated by way of example in the figures and will herein be described in detail. It should be understood, however, that there is no intent to limit example embodiments to the particular forms disclosed, but to the contrary, example embodiments are to cover all modifications, equivalents, and alternatives falling within the scope of the present invention.
The terminology used herein is for describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises”, “comprising”, “includes” and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Although the terms first, second, primary, secondary, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, but not limiting to, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any, and all, combinations of one or more of the associated listed items.
Certain terminology may be used herein for the convenience of the reader only and is not to be taken as a limitation on the scope of the invention. For example, words such as “upper”, “lower”, “left”, “right”, “front”, “rear”, “top”, “bottom”, “horizontal”, “vertical”, “upstream”, “downstream”, “fore”, “aft”, and the like; merely describe the configuration shown in the FIGS. Indeed, the element or elements of an embodiment of the present invention may be oriented in any direction and the terminology, therefore, should be understood as encompassing such variations.
As discussed in detail below, the disclosed embodiments relate generally to gas turbine systems with exhaust gas recirculation (EGR), and particularly stoichiometric operation of the gas turbine systems using EGR. The gas turbine systems disclosed herein may be coupled to a hydrocarbon production system and/or include a control system, a combined cycle system, an exhaust gas supply system, and/or an exhaust gas processing system, and each of these systems may be configured and operated as described in U.S. Patent Application No. 2014/0182301, entitled “SYSTEM AND METHOD FOR A TURBINE COMBUSTOR,” filed on Oct. 30, 2013, and U.S. Patent Application No. 2014/0123660, entitled “SYSTEM AND METHOD FOR A TURBINE COMBUSTOR,” filed on Oct. 30, 2013, both of which are hereby incorporated by reference in its entirety for all purposes. For example, the gas turbine systems may include stoichiometric exhaust gas recirculation (SEGR) gas turbine engines configured to recirculate the exhaust gas along an exhaust recirculation path, stoichiometrically combust fuel and oxidant along with at least some of the recirculated exhaust gas, and capture the exhaust gas for use in various target systems. The recirculation of the exhaust gas along with stoichiometric combustion may help to increase the concentration level of carbon dioxide (CO2) in the exhaust gas, which can then be post treated to separate and purify the CO2 and nitrogen (N2) for use in various target systems. The gas turbine systems also may employ various exhaust gas processing (e.g., heat recovery, catalyst reactions, etc.) along the exhaust recirculation path, thereby increasing the concentration level of CO2, reducing concentration levels of other emissions (e.g., carbon monoxide, nitrogen oxides, and unburnt hydrocarbons), and increasing energy recovery (e.g., with heat recovery units). Furthermore, the gas turbine engines may be configured to combust the fuel and oxidant with one or more diffusion flames (e.g., using diffusion fuel nozzles), premix flames (e.g., using premix fuel nozzles), or any combination thereof. In certain embodiments, the diffusion flames may help to maintain stability and operation within certain limits for stoichiometric combustion, which in turn helps to increase production of CO2. For example, a gas turbine system operating with diffusion flames may enable a greater quantity of EGR, as compared to a gas turbine system operating with premix flames. In turn, the increased quantity of EGR helps to increase CO2 production. Possible target systems include pipelines, storage tanks, carbon sequestration systems, and hydrocarbon production systems, such as enhanced oil recovery (EOR) systems.
In particular, present embodiments are directed toward gas turbine systems, namely stoichiometric exhaust gas recirculation (SEGR) systems having features configured to recirculate combustion products and to direct the recirculated combustion products to various locations within a combustor of the engine. For example, a combustion fluid (e.g., a mixture of oxidant and fuel) may combust within a combustion chamber of the combustor, and the hot combustion gases (e.g., combustion products) drive rotation of a turbine. At least some of the combustion products may be recirculated through the combustor, i.e., exhaust gas recirculation (EGR). In some cases, the combustion products may be directed from the turbine to a recirculating fluid compressor (e.g., EGR compressor) that compresses the combustion products, thereby generating compressed combustion products (e.g., a recirculating fluid or EGR fluid). Some of the recirculating fluid (e.g., a first flow of the recirculating fluid) may pass through an impingement sleeve in a transition piece of the combustor and travel along a combustor liner, thereby cooling the combustor liner. The first flow of the recirculating fluid may then enter the combustion chamber via one or more openings in a forward portion (e.g., upstream portion) of the combustor liner and mix with the combustion fluids in the combustion chamber. In certain embodiments, some of the recirculating fluid (e.g., a second flow of the recirculating fluid) may be directed toward and extracted through an extraction conduit. The recirculating fluid extracted via the extraction conduit may be used in any of a variety of downstream processes, such as enhanced oil recovery (EOR), carbon sequestration, CO2 injection into a well, and so forth.
The gas turbine system may be configured to operate in a stoichiometric combustion mode of operation (e.g., a stoichiometric control mode) and a non-stoichiometric combustion mode of operation (e.g., a non-stoichiometric control mode), such as a fuel-lean control mode or a fuel-rich control mode. In the stoichiometric control mode, the combustion generally occurs in a substantially stoichiometric ratio of a fuel and oxidant, thereby resulting in substantially stoichiometric combustion. In particular, stoichiometric combustion generally involves consuming substantially all of the fuel and oxidant in the combustion reaction, such that the products of combustion are substantially or entirely free of unburnt fuel and oxidant. One measure of stoichiometric combustion is the equivalence ratio, or phi (Φ), which is the ratio of the actual fuel/oxidant ratio relative to the stoichiometric fuel/oxidant ratio. An equivalence ratio of greater than 1.0 results in a fuel-rich combustion of the fuel and oxidant, whereas an equivalence ratio of less than 1.0 results in a fuel-lean combustion of the fuel and oxidant. In contrast, an equivalence ratio of 1.0 results in combustion that is neither fuel-rich nor fuel-lean, thereby substantially consuming all of the fuel and oxidant in the combustion reaction. In context of the disclosed embodiments, the term stoichiometric or substantially stoichiometric may refer to an equivalence ratio of approximately 0.95 to approximately 1.05. However, the disclosed embodiments may also include an equivalence ratio of 1.0 plus or minus 0.01, 0.02, 0.03, 0.04, 0.05, or more. Again, the stoichiometric combustion of fuel and oxidant in the turbine-based service system may result in products of combustion or exhaust gas with substantially no unburnt fuel or oxidant remaining. For example, the exhaust gas may have less than 1, 2, 3, 4, or 5 percent by volume of oxidant (e.g., oxygen), unburnt fuel or hydrocarbons (e.g., HCs), nitrogen oxides (e.g., NOX), carbon monoxide (CO), sulfur oxides (e.g., SOX), hydrogen, and other products of incomplete combustion. By further example, the exhaust gas may have less than approximately 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, or 5000 parts per million by volume (ppmv) of oxidant (e.g., oxygen), unburnt fuel or hydrocarbons (e.g., HCs), nitrogen oxides (e.g., NOX), carbon monoxide (CO), sulfur oxides (e.g., SOX), hydrogen, and other products of incomplete combustion. However, the disclosed embodiments also may produce other ranges of residual fuel, oxidant, and other emissions levels in the exhaust gas. As used herein, the terms emissions, emissions levels, and emissions targets may refer to concentration levels of certain products of combustion (e.g., NOX, CO, SOX, O2, N2, H2, HCs, etc.), which may be present in recirculated gas streams, vented gas streams (e.g., exhausted into the atmosphere), and gas streams used in various target systems (e.g., the hydrocarbon production system).
In the disclosed embodiments, various flow separating and flow guiding elements are provided to separate the combustion fluid (e.g., fuel, oxidant, etc.), the first flow of recirculating fluid (e.g., EGR fluid), and the second flow of recirculating fluid (e.g., EGR fluid) from one another and to direct these fluids to appropriate locations. For example, a flow sleeve may separate the first flow of the recirculating fluid that flows along the combustor liner from the second flow of the recirculating fluid that flows toward the extraction conduit. By way of another example, a flange may extend radially outward from the flow sleeve toward a combustor housing (e.g., case), thereby separating the second flow of the recirculating fluid from the combustion fluid in a head end of the combustor. The disclosed embodiments may advantageously recirculate the combustion products for cooling the combustion liner and for combustion, as well as for any of a variety of downstream processes (e.g., enhanced oil recovery, CO2 injection into a well, etc.). Such recirculation techniques may reduce emissions of nitrous oxides and carbon monoxide from the engine. Furthermore, the disclosed embodiments may advantageously provide components configured to separate the various fluids (e.g., combustion fluids and recirculating fluids) from one another within the engine and to efficiently direct the various fluids to appropriate locations.
Turning now to the drawings,
The combustor 14 ignites and combusts the mixture of the pressurized oxidant 22 and the fuel 26 (e.g., a fuel-oxidant mixture), and then passes hot pressurized combustion gases 30 into the turbine 16. Turbine blades are coupled to a shaft 32, which may be coupled to several other components throughout the turbine system 10. As the combustion gases 30 pass through the turbine blades in the turbine 16, the turbine 16 is driven into rotation, which causes the shaft 32 to rotate. Eventually, the combustion gases 30 exit the turbine 16 via an exhaust outlet 34. As shown, the shaft 32 is coupled to a load 40, which is powered via rotation of the shaft 32. For example, the load 40 may be any suitable device that may generate power or work via the rotational output of the system 10, such as an electrical generator.
Compressor blades are included as components of the primary compressor 12. In the illustrated embodiment, the blades within the primary compressor 12 are coupled to the shaft 32, and will rotate as the shaft 32 is driven to rotate by the turbine 16, as described above. The rotation of the blades within the compressor 12 compresses the oxidant 18 from the oxidant source 20 into the pressurized oxidant 22. The pressurized oxidant 22 is then fed into the combustor 14, either directly or via the fuel nozzles 24 of the combustors 14. For example, in some embodiments, the fuel nozzles 24 mix the pressurized oxidant 22 and fuel 26 to produce a suitable fuel-oxidant mixture ratio for combustion (e.g., a combustion that causes the fuel to more completely burn) so as not to waste fuel or cause excess emissions.
In the illustrated embodiment, the system 10 includes a recirculating fluid compressor 42 (e.g., EGR compressor), which may be driven by the shaft 32. As shown, at least some of the combustion gases 30 (e.g., exhaust gas or EGR fluid) flow from the exhaust outlet 34 into the recirculating fluid compressor 42. The recirculating fluid compressor 42 compresses the combustion gases 30 and recirculates at least some of the pressurized combustion gases 44 (e.g., recirculating fluid) toward the combustor 14. As discussed in more detail below, a first flow of the recirculating fluid 44 may be utilized to cool a liner of the combustor 14. A portion of the first flow may be subsequently directed into a combustion chamber of the combustor 14 for combustion, while another portion of the first flow may be directed toward an extraction conduit 46 (e.g., exhaust gas extraction conduit). Additionally, a second flow of the recirculating fluid 44 may not flow along the liner, but rather, may flow between a flow sleeve and a housing of the combustor toward the extraction conduit 46. The recirculating fluid 44 may be used in any of a variety of manners. For example, the recirculating fluid 44 extracted through the extraction conduit 46 may flow to an extraction system 45 (e.g., an exhaust gas extraction system), which may receive the recirculating fluid 44 from the extraction conduit 46, treat the recirculating fluid 44, and then supply or distribute the recirculating fluid 44 to one or more various downstream systems 47 (e.g., an enhanced oil recovery system or a hydrocarbon production system). The downstream systems 47 may utilize the recirculating fluid 44 in chemical reactions, drilling operations, enhanced oil recovery, CO2 injection into a well, carbon sequestration, or any combination thereof.
As noted above, the gas turbine system 10 may be configured to operate in a stoichiometric combustion mode of operation (e.g., a stoichiometric control mode) and a non-stoichiometric combustion mode of operation (e.g., a non-stoichiometric control mode), such as a fuel-lean control mode or a fuel-rich control mode. In the stoichiometric control mode, the combustion generally occurs in a substantially stoichiometric ratio of the fuel and oxidant, thereby resulting in substantially stoichiometric combustion. In context of the disclosed embodiments, the term stoichiometric or substantially stoichiometric may refer to an equivalence ratio of approximately 0.95 to approximately 1.05. However, the disclosed embodiments may also include an equivalence ratio of 1.0 plus or minus 0.01, 0.02, 0.03, 0.04, 0.05, or more. Again, the stoichiometric combustion of fuel and oxidant in the combustor 14 may result in products of combustion or exhaust gas (e.g., 42) with substantially no unburnt fuel or oxidant remaining. For example, the recirculating fluid 44 may have less than 1, 2, 3, 4, or 5 percent by volume of oxidant (e.g., oxygen), unburnt fuel or hydrocarbons (e.g., HCs), nitrogen oxides (e.g., NOX), carbon monoxide (CO), sulfur oxides (e.g., SOX), hydrogen, and other products of incomplete combustion. By further example, the recirculating fluid 44 may have less than approximately 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, or 5000 parts per million by volume (ppmv) of oxidant (e.g., oxygen), unburnt fuel or hydrocarbons (e.g., HCs), nitrogen oxides (e.g., NOX), carbon monoxide (CO), sulfur oxides (e.g., SOX), hydrogen, and other products of incomplete combustion. The low oxygen content of the recirculating fluid 44 may be achieved in any of a variety of manners. For example, in some cases, a stoichiometric mixture or approximately stoichiometric mixture of combustion fluids burn to generate combustion gases 30 having the low oxygen content. Additionally or alternatively, in some embodiments, various filtering or processing steps (e.g., oxidation catalysts or the like) may be implemented between the exhaust outlet 34 and/or the recirculating fluid compressor 42, or at any other suitable location within the system 10, to generate the low oxygen recirculating fluid 44. As noted above, the pressurized, low oxygen recirculating fluid 44 may be used for cooling a liner of the combustor 14, may be provided to the combustor for combustion, and/or may be extracted from the combustor for use in various chemical reactions, drilling operations, enhanced oil recovery (EOR), carbon sequestration, CO2 injection into a well, and so forth.
A cap 68 is positioned at a forward end 69 of the flow sleeve 64. In some embodiments, the cap 68 may be coupled to the forward end 69 of the flow sleeve 64 to form a seal 71 via any suitable technique (e.g., bolted, welded, or the like). A combustion fluid 70 (e.g., the fuel 26, the pressurized oxidant 22, and/or a mixture thereof) is directed into a head end 72 of the combustor 14 and into the combustion chamber 60. For example, in the illustrated embodiment, one or more fuel nozzles 24 disposed within the head end 72 of the combustor 14 provide a first flow 74 of the combustion fluid 70 into the combustion chamber 60. Additionally, a second flow 80 of the combustion fluid 70 flows into a first generally annular volume 76 between a forward portion 78 of the flow sleeve 64 and the case 66, and then subsequently flows radially into the combustion chamber 60 via one or more first openings 82 (e.g., conduits or holes) in the flow sleeve 64 and one or more second openings 84 (e.g., conduits or holes) in the liner 62. As shown, the second flow 80 of the combustion fluid 70 may enter the combustion chamber 60 downstream of the first flow 74 of the combustion fluid 70 in a direction that is generally transverse (e.g., a radial direction) to a flow direction 86 within the combustor 14.
The combustor 14 ignites and combusts the combustion fluid 70 in the combustion chamber 60 and passes the hot pressurized combustion gases 30 into the turbine 16. The combustion gases 30 are passed through the exhaust outlet 34, and at least some of the combustion gases 30 are directed into the recirculating fluid compressor 42. In the illustrated embodiment, the recirculating fluid compressor 42 compresses the combustion gases 30 and directs the compressed combustion gases 44 (e.g., recirculating fluid or EGR fluid) toward the combustor 14. As shown, a first flow 88 of the recirculating fluid 44 passes through an impingement sleeve 90 (e.g., a perforated sleeve) of a transition piece 91 of the combustor 14 and into a second generally annular volume 92 between the liner 62 and the flow sleeve 64. The first flow 88 of the recirculating fluid 44 may cool the liner 62 as the first flow 88 flows lengthwise along the liner 62 toward the upstream end 54 of the combustor 14. The first flow 88 may then flow radially into the combustion chamber 60 via one or more openings 93 in the liner 62, where the first flow 88 is mixed with the combustion fluid 70.
A second flow 94 of the recirculating fluid 44 does not pass through the impingement sleeve 90, but rather, is directed toward the fluid extraction conduit 46. In the illustrated embodiment, the second flow 94 of the recirculating fluid 44 flows into a third generally annular volume 96 between the flow sleeve 64 and the case 66. As shown, the third generally annular volume 96 extends around at least a portion of the second generally annular volume 92 (e.g., the second generally annular volume 92 and the third generally annular volume 96 may extend about an axis of the combustor and/or are coaxial). As used herein, the terms annular, generally annular, or generally annular volume may refer to an annular or non-annular volume having various arcuate surfaces and/or flat surfaces. The second flow 94 flows generally toward the upstream end 54 of the combustor 14 within the third generally annular volume 96 and eventually flows into the extraction conduit 46. An aft end 97 of the flow sleeve 64 is coupled to the impingement sleeve 90 via a ring 99, and an aft portion 98 of the flow sleeve 64 separates the second generally annular volume 92 from the third generally annular volume 96. Thus, once the first flow 88 of the recirculating fluid 44 passes through the impingement sleeve 90 and into the second generally annular volume 92, the first flow 88 and the second flow 94 of the recirculating fluid 44 are separated (e.g., isolated) from one another. Additionally, as discussed below, the second flow 94 of the recirculating fluid 44 within the combustor 14 is separated (e.g., isolated) from the combustion fluid 70.
The impingement sleeve 90 may be configured to enable a particular volume or percentage of the recirculating fluid 44 into the second generally annular volume 92. Thus, the first flow 88 of the recirculating fluid 44 may be any suitable fraction of the recirculating fluid 44 output by the recirculating fluid compressor 42. For example, approximately 50 percent of the recirculating fluid 44 may flow into the second generally annular volume 92, while approximately 50 percent of the recirculating fluid 44 may flow into the third generally annular volume 96. In other embodiments, approximately 10, 20, 30, 40, 60, 70, 80, 90 percent or more of the recirculating fluid 44 output by the recirculating fluid compressor 42 may flow through the impingement sleeve 90 and into the second generally annular volume 92. In some embodiments, approximately 10-75 percent, 20-60 percent, or 30-50 percent of the recirculating fluid 44 output by the recirculating fluid compressor 42 may flow through the impingement sleeve 90 and into the second generally annular volume 92.
In the illustrated embodiment, the fluid extraction conduit 46 is positioned axially between the impingement sleeve 90 and the upstream end 54 of the combustor 14 (e.g., upstream from the impingement sleeve 90 and downstream of the head end 72), although the fluid extraction conduit 46 may be disposed in any suitable position for directing the recirculating fluid 44 away from the recirculating fluid compressor 42 and/or from the combustor 14. In certain embodiments, it may be desirable for the second flow 94 of the recirculating fluid 44 to maintain a relatively high pressure as the second flow 94 flows toward the extraction conduit 46. Thus, the third generally annular volume 96 may have a relatively large cross-sectional area (e.g., a flow area) configured to maintain the relatively high pressure of the second flow 94. As space within the combustor 14, and particularly space between the liner 62 and the case 66 may be limited, the flow area of the third generally annular volume 96 may be greater than a flow area of the second generally annular volume 92 along a length of the third generally annular volume 96 to facilitate maintenance of the high pressure of the second flow 94. For example, the flow area of the third generally annular volume 96 may be approximately 10, 20, 30, 40, 50, 60 and/or more percent larger than the flow area of the second generally annular volume 92 along the length of the second generally annular volume 92. Such a configuration may enable a compact design of the combustor 14 and efficient fluid flow, while also maintaining a relatively high pressure of the second flow 94 of the recirculating fluid 44 as this fluid travels toward the extraction conduit 46.
Additionally, in the illustrated embodiment, a flange 100 extends between the flow sleeve 64 and the case 66. The flange 100 is configured to separate the second flow 94 of the recirculating fluid 44 in the third generally annular volume 96 from the combustion fluid 70 in the first generally annular volume 76. The flange 100 may have any suitable form for separating these fluids. As shown, the flange 100 extends radially outward from and circumferentially about the flow sleeve 64 (e.g., the flange 100 is annular). The flange 100 may be integrally formed with the flow sleeve 64 from a single piece of material, or the flange 100 may be welded to the flow sleeve 64. In other embodiments, the flange 100 may be coupled to the flow sleeve 64 via any suitable fasteners (e.g., a plurality of threaded fasteners, such as bolts). The flange 100 may also be coupled to the case 66 via any suitable technique. The flange 100 may be integrally formed with the case 66 from a single piece of material, or the flange 100 may be welded to the case 66. In other embodiments, the flange 100 may be coupled to the case 66 via any suitable fasteners (e.g., a plurality of threaded fasteners, such as bolts). The flange 100 blocks the flow of the combustion fluid 70 and the second flow 94 of the recirculating fluid 44 across the flange 100. Additionally, the seal 71 between the cap 68 and the forward end 69 of the flow sleeve 64 blocks the first flow 88 of the recirculating fluid 44 from entering the head end 72 of the combustor 14. Thus, the cap 68, the seal 71, the forward portion 78 of the flow sleeve 64, and the flange 100 generally separate the combustion fluid 70 and the recirculating fluid 44 from one another. Furthermore, the first flow 88 of the recirculating fluid 44 is at a higher pressure than the combustion fluid 70 flowing from the first annular space 76 into the combustion chamber 60, and this pressure differential blocks the combustion fluid 70 from flowing downstream into the second generally annular volume 92.
Technical effects of the disclosed embodiments include systems for controlling the flow of the combustion fluid 70 and the recirculating fluid 44 within the engine 10. The disclosed embodiments recirculate combustion gases 30, which may be used to cool the combustor liner 62 and/or may be extracted for other purposes, for example. The first flow 88 of the recirculating fluid 44 may flow along the liner 62, thereby cooling the liner 62, while the second flow 94 of the recirculating fluid 44 may be extracted from the combustor 14. The first flow 88 and the second flow 94 of the recirculating fluid 44 may be separated from one another via the flow sleeve 64. Additionally, the recirculating fluid 44 may be separated from the combustion fluid 70 via the cap 68, the forward portion 78 of the flow sleeve 64, the flange 100, and/or the pressure differential between the first flow 88 of recirculating fluid 44 and the combustion fluid 70. The disclosed embodiments may advantageously reduce emissions via recirculating the combustion gases 30. Additionally, the disclosed embodiments may provide a compact system for efficiently separating and directing various fluids within the combustor 14.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The present embodiments provide a system and method for gas turbine engines. It should be noted that any one or a combination of the features described above may be utilized in any suitable combination. Indeed, all permutations of such combinations are presently contemplated. By way of example, the following clauses are offered as further description of the present disclosure:
A system, comprising: a turbine combustor, comprising: a first volume configured to receive a combustion fluid and to direct the combustion fluid into a combustion chamber; and a second volume configured to receive a first flow of an exhaust gas and to direct the first flow of the exhaust gas into the combustion chamber; and a third volume disposed axially downstream from the first volume and circumferentially about at least a portion of the second volume, wherein the third volume is configured to receive a second flow of the exhaust gas and to direct the second flow of the exhaust gas out of the turbine combustor via an extraction outlet, and the third volume is isolated from each of the first volume and from the second volume.
The system of embodiment 1, comprising: a housing; a flow sleeve disposed within the housing, wherein the third volume is defined between an aft portion of the flow sleeve and the housing; and a flange extending radially outward from the flow sleeve to the housing, wherein the flange isolates the third volume from the first volume.
The system defined in any preceding embodiment, wherein the extraction outlet is positioned between a transition piece and a head end of the combustor.
The system defined in any preceding embodiment, comprising: a housing, a liner disposed within the housing; a flow sleeve disposed within the housing and radially outward of the liner, wherein the second volume is defined between the liner and the flow sleeve, the third volume is defined between the flow sleeve and the housing, and an aft portion of the flow sleeve isolates the first volume from the second volume.
The system defined in any preceding embodiment, comprising an exhaust gas compressor configured to compress and to route the exhaust gas to the turbine combustor.
The system defined in any preceding embodiment, comprising a gas turbine engine having the turbine combustor, wherein the gas turbine engine is a stoichiometric exhaust gas recirculation gas turbine engine.
The system defined in any preceding embodiment, comprising an exhaust gas extraction system coupled to the extraction conduit, and a hydrocarbon production system coupled to the exhaust gas extraction system.
The system defined in any preceding embodiment, wherein the first volume is disposed within a head end of the turbine combustor.
The system defined in any preceding embodiment, comprising: a liner defining a combustion chamber of the turbine combustor; a flow sleeve disposed radially outward of the liner; and a cap positioned proximate to the head end of the turbine combustor and coupled to a forward end of the flow sleeve to form a seal; wherein the second volume is defined between the liner and flow sleeve, and the seal is configured to block the first flow of the second fluid from flowing into the head end of the turbine combustor.
The system defined in any preceding embodiment, wherein a forward portion of the flow sleeve comprises one or more openings configured to enable the first fluid to flow radially inward through the flow sleeve and toward the combustion chamber.
The system defined in any preceding embodiment, wherein a first cross-sectional flow area of the second volume is less than a second cross-sectional flow area of the third volume.
A system, comprising: a turbine combustor, comprising: a housing; a liner defining a combustion chamber; a flow sleeve disposed about the liner; a first volume disposed in a head end of the combustion chamber, wherein the first volume is configured to receive a combustion fluid and to provide the combustion fluid to the combustion chamber; a second volume disposed downstream of the first volume and defined between the flow sleeve and the housing, wherein the second volume is configured to receive a first flow of recirculated combustion products and to direct the first flow of recirculated combustion products out of the combustor via an extraction conduit; and a flange extending between the flow sleeve and the housing, wherein the flange is configured to block flow of the combustion fluid into the second volume and to block flow of the first flow of recirculated combustion products into the first volume.
The system defined in any preceding embodiment, comprising a third volume defined between the liner and the flow sleeve, wherein the third volume is configured to receive a second flow of recirculated combustion products and to direct the second flow of recirculated combustion products into the combustion chamber, and the flow sleeve isolates the second volume from the third volume.
The system defined in any preceding embodiment, comprising a transition piece having an impingement sleeve, wherein the impingement sleeve enables the second flow of recirculated combustion products to flow into the third volume.
The system defined in any preceding embodiment, wherein the extraction conduit is positioned between a transition piece and a head end of the turbine combustor.
The system defined in any preceding embodiment, comprising an exhaust gas compressor configured to compress and to route the recirculated combustion products to the turbine combustor.
The system defined in any preceding embodiment, comprising an exhaust gas extraction system coupled to the extraction conduit, and a hydrocarbon production system coupled to the exhaust gas extraction system.
The system defined in any preceding embodiment, comprising a gas turbine engine having the turbine combustor, wherein the gas turbine engine is a stoichiometric exhaust gas recirculation gas turbine engine.
A method, comprising: combusting an oxidant and a fuel in a combustion chamber of a turbine combustor to generate combustion products; compressing at least some of the combustion products generated by the combustor to generate compressed combustion products; cooling a liner of the turbine combustor using a first flow of the compressed combustion products; and isolating a second flow of the compressed combustion products within the turbine combustor from the oxidant, the fuel, and the first flow of the compressed combustion products.
The method or system defined in any preceding embodiment, wherein combusting the oxidant and the fuel comprises operating the turbine combustor in a stoichiometric combustion mode of operation.
The method or system defined in any preceding embodiment, comprising directing the first flow of the compressed combustion products into the combustion chamber.
The method or system defined in any preceding embodiment, comprising extracting the second flow of the compressed combustion products out of the turbine combustor.
The method or system defined in any preceding embodiment, wherein extracting the second flow of the compressed combustion products out of the combustor occurs between a transition piece and a head end of the turbine combustor.
The method or system defined in any preceding embodiment, wherein the first flow of the compressed combustion products comprises approximately 50 percent of the compressed combustion products output by the compressor.
The method or system defined in any preceding embodiment, wherein the compressed combustion products output by the compressor comprise less than 5 percent by volume of oxygen.
This application claims priority to and benefit of U.S. Provisional Patent Application No. 62/112,123, entitled “TURBINE SYSTEM WITH EXHAUST GAS RECIRCULATION, SEPARATION AND EXTRACTION,” filed on Feb. 4, 2015, which is incorporated by reference herein in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2488911 | Hepburn et al. | Nov 1949 | A |
2884758 | Oberle | May 1959 | A |
2906092 | Haltenberger | Sep 1959 | A |
3631672 | Gentile et al. | Jan 1972 | A |
3643430 | Emory et al. | Feb 1972 | A |
3705492 | Vickers | Dec 1972 | A |
3841382 | Gravis et al. | Oct 1974 | A |
3949548 | Lockwood | Apr 1976 | A |
4018046 | Hurley | Apr 1977 | A |
4043395 | Every et al. | Aug 1977 | A |
4050239 | Kappler | Sep 1977 | A |
4066214 | Johnson | Jan 1978 | A |
4077206 | Ayyagari | Mar 1978 | A |
4085578 | Kydd | Apr 1978 | A |
4092095 | Straitz | May 1978 | A |
4101294 | Kimura | Jul 1978 | A |
4112676 | DeCorso | Sep 1978 | A |
4117671 | Neal et al. | Oct 1978 | A |
4160526 | Flanagan | Jul 1979 | A |
4160640 | Maev et al. | Jul 1979 | A |
4164124 | Taylor | Aug 1979 | A |
4165609 | Rudolph | Aug 1979 | A |
4171349 | Cucuiat et al. | Oct 1979 | A |
4204401 | Earnest | May 1980 | A |
4222240 | Castellano | Sep 1980 | A |
4224991 | Sowa et al. | Sep 1980 | A |
4236378 | Vogt | Dec 1980 | A |
4253301 | Vogt | Mar 1981 | A |
4271664 | Earnest | Jun 1981 | A |
4344486 | Parrish | Aug 1982 | A |
4345426 | Egnell et al. | Aug 1982 | A |
4352269 | Dineen | Oct 1982 | A |
4373325 | Shekleton | Feb 1983 | A |
4380895 | Adkins | Apr 1983 | A |
4399652 | Cole et al. | Aug 1983 | A |
4414334 | Hitzman | Nov 1983 | A |
4427362 | Dykema | Jan 1984 | A |
4434613 | Stahl | Mar 1984 | A |
4435153 | Hashimoto et al. | Mar 1984 | A |
4442665 | Fick et al. | Apr 1984 | A |
4445842 | Syska | May 1984 | A |
4479484 | Davis | Oct 1984 | A |
4480985 | Davis | Nov 1984 | A |
4488865 | Davis | Dec 1984 | A |
4498288 | Vogt | Feb 1985 | A |
4498289 | Osgerby | Feb 1985 | A |
4528811 | Stahl | Jul 1985 | A |
4543784 | Kirker | Oct 1985 | A |
4548034 | Maguire | Oct 1985 | A |
4561245 | Ball | Dec 1985 | A |
4569310 | Davis | Feb 1986 | A |
4577462 | Robertson | Mar 1986 | A |
4602614 | Percival et al. | Jul 1986 | A |
4606721 | Livingston | Aug 1986 | A |
4613299 | Backheim | Sep 1986 | A |
4637792 | Davis | Jan 1987 | A |
4651712 | Davis | Mar 1987 | A |
4653278 | Vinson et al. | Mar 1987 | A |
4681678 | Leaseburge et al. | Jul 1987 | A |
4684465 | Leaseburge et al. | Aug 1987 | A |
4753666 | Pastor et al. | Jun 1988 | A |
4762543 | Pantermuehl et al. | Aug 1988 | A |
4817387 | Lashbrook | Apr 1989 | A |
4858428 | Paul | Aug 1989 | A |
4895710 | Hartmann et al. | Jan 1990 | A |
4898001 | Kuroda et al. | Feb 1990 | A |
4946597 | Sury | Aug 1990 | A |
4976100 | Lee | Dec 1990 | A |
5014785 | Puri et al. | May 1991 | A |
5044932 | Martin et al. | Sep 1991 | A |
5073105 | Martin et al. | Dec 1991 | A |
5084438 | Matsubara et al. | Jan 1992 | A |
5085274 | Puri et al. | Feb 1992 | A |
5098282 | Schwartz et al. | Mar 1992 | A |
5123248 | Monty et al. | Jun 1992 | A |
5135387 | Martin et al. | Aug 1992 | A |
5141049 | Larsen et al. | Aug 1992 | A |
5142866 | Yanagihara et al. | Sep 1992 | A |
5147111 | Montgomery | Sep 1992 | A |
5154596 | Schwartz et al. | Oct 1992 | A |
5183232 | Gale | Feb 1993 | A |
5195884 | Schwartz et al. | Mar 1993 | A |
5197289 | Glevicky et al. | Mar 1993 | A |
5238395 | Schwartz et al. | Aug 1993 | A |
5255506 | Wilkes et al. | Oct 1993 | A |
5259342 | Brady | Nov 1993 | A |
5265410 | Hisatome | Nov 1993 | A |
5271905 | Owen et al. | Dec 1993 | A |
5275552 | Schwartz et al. | Jan 1994 | A |
5295350 | Child et al. | Mar 1994 | A |
5304362 | Madsen | Apr 1994 | A |
5325660 | Taniguchi et al. | Jul 1994 | A |
5332036 | Shirley et al. | Jul 1994 | A |
5344307 | Schwartz et al. | Sep 1994 | A |
5345756 | Jahnke et al. | Sep 1994 | A |
5355668 | Weil et al. | Oct 1994 | A |
5359847 | Pillsbury et al. | Nov 1994 | A |
5361586 | McWhirter et al. | Nov 1994 | A |
5388395 | Scharpf et al. | Feb 1995 | A |
5394688 | Amos | Mar 1995 | A |
5402847 | Wilson et al. | Apr 1995 | A |
5444971 | Holenberger | Aug 1995 | A |
5457951 | Johnson et al. | Oct 1995 | A |
5458481 | Surbey et al. | Oct 1995 | A |
5468270 | Borszynski | Nov 1995 | A |
5490378 | Berger et al. | Feb 1996 | A |
5542840 | Surbey et al. | Aug 1996 | A |
5566756 | Chaback et al. | Oct 1996 | A |
5572862 | Mowill | Nov 1996 | A |
5581998 | Craig | Dec 1996 | A |
5584182 | Althaus et al. | Dec 1996 | A |
5590518 | Janes | Jan 1997 | A |
5623819 | Bowker | Apr 1997 | A |
5628182 | Mowill | May 1997 | A |
5634329 | Andersson et al. | Jun 1997 | A |
5638675 | Zysman et al. | Jun 1997 | A |
5640840 | Briesch | Jun 1997 | A |
5657631 | Androsov | Aug 1997 | A |
5680764 | Viteri | Oct 1997 | A |
5685158 | Lenahan et al. | Nov 1997 | A |
5709077 | Beichel | Jan 1998 | A |
5713206 | McWhirter et al. | Feb 1998 | A |
5715673 | Beichel | Feb 1998 | A |
5724805 | Golomb et al. | Mar 1998 | A |
5725054 | Shayegi et al. | Mar 1998 | A |
5740786 | Gartner | Apr 1998 | A |
5743079 | Walsh et al. | Apr 1998 | A |
5765363 | Mowill | Jun 1998 | A |
5771867 | Amstutz et al. | Jun 1998 | A |
5771868 | Khair | Jun 1998 | A |
5819540 | Massarani | Oct 1998 | A |
5832712 | Ronning et al. | Nov 1998 | A |
5836164 | Tsukahara et al. | Nov 1998 | A |
5839283 | Dobbeling | Nov 1998 | A |
5850732 | Willis et al. | Dec 1998 | A |
5894720 | Willis et al. | Apr 1999 | A |
5901547 | Smith et al. | May 1999 | A |
5924275 | Cohen et al. | Jul 1999 | A |
5930990 | Zachary et al. | Aug 1999 | A |
5937634 | Etheridge et al. | Aug 1999 | A |
5950417 | Robertson et al. | Sep 1999 | A |
5956937 | Beichel | Sep 1999 | A |
5968349 | Duyvesteyn et al. | Oct 1999 | A |
5974780 | Santos | Nov 1999 | A |
5992388 | Seger | Nov 1999 | A |
6016658 | Willis et al. | Jan 2000 | A |
6032465 | Regnier | Mar 2000 | A |
6035641 | Lokhandwala | Mar 2000 | A |
6062026 | Woollenweber et al. | May 2000 | A |
6065282 | Fukue | May 2000 | A |
6079974 | Thompson | Jun 2000 | A |
6082093 | Greenwood et al. | Jul 2000 | A |
6089855 | Becker et al. | Jul 2000 | A |
6094916 | Puri et al. | Aug 2000 | A |
6101983 | Anand et al. | Aug 2000 | A |
6148602 | Demetri | Nov 2000 | A |
6170264 | Viteri et al. | Jan 2001 | B1 |
6183241 | Bohn et al. | Feb 2001 | B1 |
6201029 | Waycuilis | Mar 2001 | B1 |
6202400 | Utamura et al. | Mar 2001 | B1 |
6202442 | Brugerolle | Mar 2001 | B1 |
6202574 | Liljedahl et al. | Mar 2001 | B1 |
6209325 | Alkabie | Apr 2001 | B1 |
6216459 | Daudel et al. | Apr 2001 | B1 |
6216549 | Davis et al. | Apr 2001 | B1 |
6230103 | DeCorso et al. | May 2001 | B1 |
6237339 | Åsen et al. | May 2001 | B1 |
6247315 | Marin et al. | Jun 2001 | B1 |
6247316 | Viteri | Jun 2001 | B1 |
6248794 | Gieskes | Jun 2001 | B1 |
6253555 | Willis | Jul 2001 | B1 |
6256976 | Kataoka et al. | Jul 2001 | B1 |
6256994 | Dillon, IV | Jul 2001 | B1 |
6263659 | Dillon, IV et al. | Jul 2001 | B1 |
6266954 | McCallum et al. | Jul 2001 | B1 |
6269882 | Wellington et al. | Aug 2001 | B1 |
6276171 | Brugerolle | Aug 2001 | B1 |
6282901 | Marin et al. | Sep 2001 | B1 |
6283087 | Isaksen | Sep 2001 | B1 |
6289677 | Prociw et al. | Sep 2001 | B1 |
6298652 | Mittricker et al. | Oct 2001 | B1 |
6298654 | Vermes et al. | Oct 2001 | B1 |
6298664 | Åsen et al. | Oct 2001 | B1 |
6301888 | Gray | Oct 2001 | B1 |
6301889 | Gladden et al. | Oct 2001 | B1 |
6305929 | Chung et al. | Oct 2001 | B1 |
6314721 | Mathews et al. | Nov 2001 | B1 |
6324867 | Fanning et al. | Dec 2001 | B1 |
6332313 | Willis et al. | Dec 2001 | B1 |
6345493 | Smith et al. | Feb 2002 | B1 |
6360528 | Brausch et al. | Mar 2002 | B1 |
6363709 | Kataoka et al. | Apr 2002 | B2 |
6367258 | Wen et al. | Apr 2002 | B1 |
6370870 | Kamijo et al. | Apr 2002 | B1 |
6374591 | Johnson et al. | Apr 2002 | B1 |
6374594 | Kraft et al. | Apr 2002 | B1 |
6383461 | Lang | May 2002 | B1 |
6389814 | Viteri et al. | May 2002 | B2 |
6405536 | Ho et al. | Jun 2002 | B1 |
6412278 | Matthews | Jul 2002 | B1 |
6412302 | Foglietta | Jul 2002 | B1 |
6412559 | Gunter et al. | Jul 2002 | B1 |
6418725 | Maeda et al. | Jul 2002 | B1 |
6429020 | Thornton et al. | Aug 2002 | B1 |
6449954 | Bachmann | Sep 2002 | B2 |
6450256 | Mones | Sep 2002 | B2 |
6461147 | Sonju et al. | Oct 2002 | B1 |
6467270 | Mulloy et al. | Oct 2002 | B2 |
6470682 | Gray | Oct 2002 | B2 |
6477859 | Wong et al. | Nov 2002 | B2 |
6484503 | Raz | Nov 2002 | B1 |
6484507 | Pradt | Nov 2002 | B1 |
6487863 | Chen et al. | Dec 2002 | B1 |
6499990 | Zink et al. | Dec 2002 | B1 |
6502383 | Janardan et al. | Jan 2003 | B1 |
6505567 | Anderson et al. | Jan 2003 | B1 |
6505683 | Minkkinen et al. | Jan 2003 | B2 |
6508209 | Collier | Jan 2003 | B1 |
6523349 | Viteri | Feb 2003 | B2 |
6532745 | Nealy | Mar 2003 | B1 |
6539716 | Finger et al. | Apr 2003 | B2 |
6584775 | Schneider et al. | Jul 2003 | B1 |
6598398 | Viteri et al. | Jul 2003 | B2 |
6598399 | Liebig | Jul 2003 | B2 |
6598402 | Kataoka et al. | Jul 2003 | B2 |
6606861 | Snyder | Aug 2003 | B2 |
6612291 | Sakamoto | Sep 2003 | B2 |
6615576 | Sheoran et al. | Sep 2003 | B2 |
6615589 | Allam et al. | Sep 2003 | B2 |
6622470 | Viteri et al. | Sep 2003 | B2 |
6622645 | Havlena | Sep 2003 | B2 |
6637183 | Viteri et al. | Oct 2003 | B2 |
6644041 | Eyermann | Nov 2003 | B1 |
6655150 | Åsen et al. | Dec 2003 | B1 |
6668541 | Rice et al. | Dec 2003 | B2 |
6672863 | Doebbeling et al. | Jan 2004 | B2 |
6675579 | Yang | Jan 2004 | B1 |
6684643 | Frutschi | Feb 2004 | B2 |
6694735 | Sumser et al. | Feb 2004 | B2 |
6698412 | Betta | Mar 2004 | B2 |
6702570 | Shah et al. | Mar 2004 | B2 |
6722436 | Krill | Apr 2004 | B2 |
6725665 | Tuschy et al. | Apr 2004 | B2 |
6731501 | Cheng | May 2004 | B1 |
6732531 | Dickey | May 2004 | B2 |
6742506 | Grandin | Jun 2004 | B1 |
6743829 | Fischer-Calderon et al. | Jun 2004 | B2 |
6745573 | Marin et al. | Jun 2004 | B2 |
6745624 | Porter et al. | Jun 2004 | B2 |
6748004 | Jepson | Jun 2004 | B2 |
6752620 | Heier et al. | Jun 2004 | B2 |
6767527 | Åsen et al. | Jul 2004 | B1 |
6772583 | Bland | Aug 2004 | B2 |
6790030 | Fischer et al. | Sep 2004 | B2 |
6805483 | Tomlinson et al. | Oct 2004 | B2 |
6810673 | Snyder | Nov 2004 | B2 |
6813889 | Inoue et al. | Nov 2004 | B2 |
6817187 | Yu | Nov 2004 | B2 |
6820428 | Wylie | Nov 2004 | B2 |
6821501 | Matzakos et al. | Nov 2004 | B2 |
6823852 | Collier | Nov 2004 | B2 |
6824710 | Viteri et al. | Nov 2004 | B2 |
6826912 | Levy et al. | Dec 2004 | B2 |
6826913 | Wright | Dec 2004 | B2 |
6838071 | Olsvik et al. | Jan 2005 | B1 |
6851413 | Tamol | Feb 2005 | B1 |
6868677 | Viteri et al. | Mar 2005 | B2 |
6886334 | Shirakawa | May 2005 | B2 |
6887069 | Thornton et al. | May 2005 | B1 |
6899859 | Olsvik | May 2005 | B1 |
6901760 | Dittmann et al. | Jun 2005 | B2 |
6904815 | Widmer | Jun 2005 | B2 |
6907737 | Mittricker et al. | Jun 2005 | B2 |
6910335 | Viteri et al. | Jun 2005 | B2 |
6923915 | Alford et al. | Aug 2005 | B2 |
6939130 | Abbasi et al. | Sep 2005 | B2 |
6945029 | Viteri | Sep 2005 | B2 |
6945052 | Frutschi et al. | Sep 2005 | B2 |
6945087 | Porter et al. | Sep 2005 | B2 |
6945089 | Barie et al. | Sep 2005 | B2 |
6946419 | Kaefer | Sep 2005 | B2 |
6969123 | Vinegar et al. | Nov 2005 | B2 |
6971242 | Boardman | Dec 2005 | B2 |
6981358 | Bellucci et al. | Jan 2006 | B2 |
6988549 | Babcock | Jan 2006 | B1 |
6993901 | Shirakawa | Feb 2006 | B2 |
6993916 | Johnson et al. | Feb 2006 | B2 |
6994491 | Kittle | Feb 2006 | B2 |
7007487 | Belokon et al. | Mar 2006 | B2 |
7010921 | Intile et al. | Mar 2006 | B2 |
7011154 | Maher et al. | Mar 2006 | B2 |
7015271 | Bice et al. | Mar 2006 | B2 |
7032388 | Healy | Apr 2006 | B2 |
7040400 | de Rouffignac et al. | May 2006 | B2 |
7043898 | Rago | May 2006 | B2 |
7043920 | Viteri et al. | May 2006 | B2 |
7045553 | Hershkowitz | May 2006 | B2 |
7053128 | Hershkowitz | May 2006 | B2 |
7056482 | Hakka et al. | Jun 2006 | B2 |
7059152 | Oakey et al. | Jun 2006 | B2 |
7065953 | Kopko | Jun 2006 | B1 |
7065972 | Zupanc et al. | Jun 2006 | B2 |
7074033 | Neary | Jul 2006 | B2 |
7077199 | Vinegar et al. | Jul 2006 | B2 |
7089743 | Frutschi et al. | Aug 2006 | B2 |
7096942 | de Rouffignac et al. | Aug 2006 | B1 |
7097925 | Keefer | Aug 2006 | B2 |
7104319 | Vinegar et al. | Sep 2006 | B2 |
7104784 | Hasegawa et al. | Sep 2006 | B1 |
7124589 | Neary | Oct 2006 | B2 |
7137256 | Stuttaford et al. | Nov 2006 | B1 |
7137623 | Mockry et al. | Nov 2006 | B2 |
7143572 | Ooka et al. | Dec 2006 | B2 |
7143606 | Tranier | Dec 2006 | B2 |
7146969 | Weirich | Dec 2006 | B2 |
7147461 | Neary | Dec 2006 | B2 |
7148261 | Hershkowitz et al. | Dec 2006 | B2 |
7152409 | Yee et al. | Dec 2006 | B2 |
7162875 | Fletcher et al. | Jan 2007 | B2 |
7168265 | Briscoe et al. | Jan 2007 | B2 |
7168488 | Olsvik et al. | Jan 2007 | B2 |
7183328 | Hershkowitz et al. | Feb 2007 | B2 |
7185497 | Dudebout et al. | Mar 2007 | B2 |
7194869 | McQuiggan et al. | Mar 2007 | B2 |
7197880 | Thornton et al. | Apr 2007 | B2 |
7217303 | Hershkowitz et al. | May 2007 | B2 |
7225623 | Koshoffer | Jun 2007 | B2 |
7237385 | Carrea | Jul 2007 | B2 |
7284362 | Marin et al. | Oct 2007 | B2 |
7299619 | Briesch et al. | Nov 2007 | B2 |
7299868 | Zapadinski | Nov 2007 | B2 |
7302801 | Chen | Dec 2007 | B2 |
7305817 | Blodgett et al. | Dec 2007 | B2 |
7305831 | Carrea et al. | Dec 2007 | B2 |
7313916 | Pellizzari | Jan 2008 | B2 |
7318317 | Carrea | Jan 2008 | B2 |
7343742 | Wimmer et al. | Mar 2008 | B2 |
7353655 | Bolis et al. | Apr 2008 | B2 |
7357857 | Hart et al. | Apr 2008 | B2 |
7363756 | Carrea et al. | Apr 2008 | B2 |
7363764 | Griffin et al. | Apr 2008 | B2 |
7381393 | Lynn | Jun 2008 | B2 |
7401577 | Saucedo et al. | Jul 2008 | B2 |
7410525 | Liu et al. | Aug 2008 | B1 |
7416137 | Hagen et al. | Aug 2008 | B2 |
7434384 | Lord et al. | Oct 2008 | B2 |
7438744 | Beaumont | Oct 2008 | B2 |
7467942 | Carroni et al. | Dec 2008 | B2 |
7468173 | Hughes et al. | Dec 2008 | B2 |
7472550 | Lear et al. | Jan 2009 | B2 |
7481048 | Harmon et al. | Jan 2009 | B2 |
7481275 | Olsvik et al. | Jan 2009 | B2 |
7482500 | Johann et al. | Jan 2009 | B2 |
7485761 | Schindler et al. | Feb 2009 | B2 |
7488857 | Johann et al. | Feb 2009 | B2 |
7490472 | Lynghjem et al. | Feb 2009 | B2 |
7491250 | Hershkowitz et al. | Feb 2009 | B2 |
7492054 | Catlin | Feb 2009 | B2 |
7493769 | Jangili | Feb 2009 | B2 |
7498009 | Leach et al. | Mar 2009 | B2 |
7503178 | Bucker et al. | Mar 2009 | B2 |
7503948 | Hershkowitz et al. | Mar 2009 | B2 |
7506501 | Anderson et al. | Mar 2009 | B2 |
7513099 | Nuding et al. | Apr 2009 | B2 |
7513100 | Motter et al. | Apr 2009 | B2 |
7516626 | Brox et al. | Apr 2009 | B2 |
7520134 | Durbin et al. | Apr 2009 | B2 |
7523603 | Hagen et al. | Apr 2009 | B2 |
7536252 | Hibshman et al. | May 2009 | B1 |
7536873 | Nohlen | May 2009 | B2 |
7540150 | Schmid et al. | Jun 2009 | B2 |
7559977 | Fleischer et al. | Jul 2009 | B2 |
7562519 | Harris et al. | Jul 2009 | B1 |
7562529 | Kuspert et al. | Jul 2009 | B2 |
7566394 | Koseoglu | Jul 2009 | B2 |
7574856 | Mak | Aug 2009 | B2 |
7591866 | Bose | Sep 2009 | B2 |
7594386 | Narayanan et al. | Sep 2009 | B2 |
7610752 | Betta et al. | Nov 2009 | B2 |
7610759 | Yoshida et al. | Nov 2009 | B2 |
7611681 | Kaefer | Nov 2009 | B2 |
7614352 | Anthony et al. | Nov 2009 | B2 |
7618606 | Fan et al. | Nov 2009 | B2 |
7631493 | Shirakawa et al. | Dec 2009 | B2 |
7634915 | Hoffmann et al. | Dec 2009 | B2 |
7635408 | Mak et al. | Dec 2009 | B2 |
7637093 | Rao | Dec 2009 | B2 |
7644573 | Smith et al. | Jan 2010 | B2 |
7650744 | Varatharajan et al. | Jan 2010 | B2 |
7654320 | Payton | Feb 2010 | B2 |
7654330 | Zubrin et al. | Feb 2010 | B2 |
7655071 | De Vreede | Feb 2010 | B2 |
7670135 | Zink et al. | Mar 2010 | B1 |
7673454 | Saito et al. | Mar 2010 | B2 |
7673685 | Shaw et al. | Mar 2010 | B2 |
7674443 | Davis | Mar 2010 | B1 |
7677309 | Shaw et al. | Mar 2010 | B2 |
7681394 | Haugen | Mar 2010 | B2 |
7682597 | Blumenfeld et al. | Mar 2010 | B2 |
7690204 | Drnevich et al. | Apr 2010 | B2 |
7691788 | Tan et al. | Apr 2010 | B2 |
7695703 | Sobolevskiy et al. | Apr 2010 | B2 |
7717173 | Grott | May 2010 | B2 |
7721543 | Massey et al. | May 2010 | B2 |
7726114 | Evulet | Jun 2010 | B2 |
7734408 | Shiraki | Jun 2010 | B2 |
7739864 | Finkenrath et al. | Jun 2010 | B2 |
7749311 | Saito et al. | Jul 2010 | B2 |
7752848 | Balan et al. | Jul 2010 | B2 |
7752850 | Laster et al. | Jul 2010 | B2 |
7753039 | Harima et al. | Jul 2010 | B2 |
7753972 | Zubrin et al. | Jul 2010 | B2 |
7762084 | Martis et al. | Jul 2010 | B2 |
7763163 | Koseoglu | Jul 2010 | B2 |
7763227 | Wang | Jul 2010 | B2 |
7765810 | Pfefferle | Aug 2010 | B2 |
7788897 | Campbell et al. | Sep 2010 | B2 |
7789159 | Bader | Sep 2010 | B1 |
7789658 | Towler et al. | Sep 2010 | B2 |
7789944 | Saito et al. | Sep 2010 | B2 |
7793494 | Wirth et al. | Sep 2010 | B2 |
7802434 | Varatharajan et al. | Sep 2010 | B2 |
7815873 | Sankaranarayanan et al. | Oct 2010 | B2 |
7815892 | Hershkowitz et al. | Oct 2010 | B2 |
7819951 | White et al. | Oct 2010 | B2 |
7824179 | Hasegawa et al. | Nov 2010 | B2 |
7827778 | Finkenrath et al. | Nov 2010 | B2 |
7827794 | Pronske et al. | Nov 2010 | B1 |
7841186 | So et al. | Nov 2010 | B2 |
7845406 | Nitschke | Dec 2010 | B2 |
7846401 | Hershkowitz et al. | Dec 2010 | B2 |
7861511 | Chillar et al. | Jan 2011 | B2 |
7874140 | Fan et al. | Jan 2011 | B2 |
7874350 | Pfefferle | Jan 2011 | B2 |
7875402 | Hershkowitz et al. | Jan 2011 | B2 |
7882692 | Pronske et al. | Feb 2011 | B2 |
7886522 | Kammel | Feb 2011 | B2 |
7895822 | Hoffmann | Mar 2011 | B2 |
7896105 | Dupriest | Mar 2011 | B2 |
7906304 | Kohr | Mar 2011 | B2 |
7909898 | White et al. | Mar 2011 | B2 |
7914749 | Carstens et al. | Mar 2011 | B2 |
7914764 | Hershkowitz et al. | Mar 2011 | B2 |
7918906 | Zubrin et al. | Apr 2011 | B2 |
7921633 | Rising | Apr 2011 | B2 |
7921653 | Som et al. | Apr 2011 | B2 |
7922871 | Price et al. | Apr 2011 | B2 |
7926292 | Rabovitser et al. | Apr 2011 | B2 |
7931712 | Zubrin et al. | Apr 2011 | B2 |
7931731 | Van Heeringen et al. | Apr 2011 | B2 |
7931888 | Drnevich et al. | Apr 2011 | B2 |
7934926 | Kornbluth et al. | May 2011 | B2 |
7942003 | Baudoin et al. | May 2011 | B2 |
7942008 | Joshi et al. | May 2011 | B2 |
7943097 | Golden et al. | May 2011 | B2 |
7955403 | Ariyapadi et al. | Jun 2011 | B2 |
7966822 | Myers et al. | Jun 2011 | B2 |
7976803 | Hooper et al. | Jul 2011 | B2 |
7980312 | Hill et al. | Jul 2011 | B1 |
7985399 | Drnevich et al. | Jul 2011 | B2 |
7988750 | Lee et al. | Aug 2011 | B2 |
8001789 | Vega et al. | Aug 2011 | B2 |
8029273 | Paschereit et al. | Oct 2011 | B2 |
8036813 | Tonetti et al. | Oct 2011 | B2 |
8038416 | Ono et al. | Oct 2011 | B2 |
8038746 | Clark | Oct 2011 | B2 |
8038773 | Ochs et al. | Oct 2011 | B2 |
8046986 | Chillar et al. | Nov 2011 | B2 |
8047007 | Zubrin | Nov 2011 | B2 |
8051638 | Aljabari et al. | Nov 2011 | B2 |
8061120 | Hwang | Nov 2011 | B2 |
8062617 | Stakhev et al. | Nov 2011 | B2 |
8065870 | Jobson et al. | Nov 2011 | B2 |
8065874 | Fong et al. | Nov 2011 | B2 |
8074439 | Foret | Dec 2011 | B2 |
8080225 | Dickinson et al. | Dec 2011 | B2 |
8083474 | Hashimoto et al. | Dec 2011 | B2 |
8097230 | Mesters et al. | Jan 2012 | B2 |
8101146 | Fedeyko et al. | Jan 2012 | B2 |
8105559 | Melville et al. | Jan 2012 | B2 |
8110012 | Chiu et al. | Feb 2012 | B2 |
8117825 | Griffin et al. | Feb 2012 | B2 |
8117846 | Wilbraham | Feb 2012 | B2 |
8127558 | Bland et al. | Mar 2012 | B2 |
8127936 | Liu et al. | Mar 2012 | B2 |
8127937 | Liu et al. | Mar 2012 | B2 |
8133298 | Lanyi et al. | Mar 2012 | B2 |
8166766 | Draper | May 2012 | B2 |
8167960 | Gil | May 2012 | B2 |
8176982 | Gil et al. | May 2012 | B2 |
8191360 | Fong et al. | Jun 2012 | B2 |
8191361 | Fong et al. | Jun 2012 | B2 |
8196387 | Shah et al. | Jun 2012 | B2 |
8196413 | Mak | Jun 2012 | B2 |
8201402 | Fong et al. | Jun 2012 | B2 |
8205455 | Popovic | Jun 2012 | B2 |
8206669 | Schaffer et al. | Jun 2012 | B2 |
8209192 | Gil et al. | Jun 2012 | B2 |
8215105 | Fong et al. | Jul 2012 | B2 |
8220247 | Wijmans et al. | Jul 2012 | B2 |
8220248 | Wijmans et al. | Jul 2012 | B2 |
8220268 | Callas | Jul 2012 | B2 |
8225600 | Theis | Jul 2012 | B2 |
8226912 | Kloosterman et al. | Jul 2012 | B2 |
8240142 | Fong et al. | Aug 2012 | B2 |
8240153 | Childers et al. | Aug 2012 | B2 |
8245492 | Draper | Aug 2012 | B2 |
8245493 | Minto | Aug 2012 | B2 |
8247462 | Boshoff et al. | Aug 2012 | B2 |
8257476 | White et al. | Sep 2012 | B2 |
8261823 | Hill et al. | Sep 2012 | B1 |
8262343 | Hagen | Sep 2012 | B2 |
8266883 | Ouellet et al. | Sep 2012 | B2 |
8266913 | Snook et al. | Sep 2012 | B2 |
8268044 | Wright et al. | Sep 2012 | B2 |
8281596 | Rohrssen | Oct 2012 | B1 |
8316665 | Mak | Nov 2012 | B2 |
8316784 | D'Agostini | Nov 2012 | B2 |
8337613 | Zauderer | Dec 2012 | B2 |
8347600 | Wichmann et al. | Jan 2013 | B2 |
8348551 | Baker et al. | Jan 2013 | B2 |
8371100 | Draper | Feb 2013 | B2 |
8372251 | Goller et al. | Feb 2013 | B2 |
8375726 | Wiebe et al. | Feb 2013 | B2 |
8377184 | Fujikawa et al. | Feb 2013 | B2 |
8377401 | Darde et al. | Feb 2013 | B2 |
8388919 | Hooper et al. | Mar 2013 | B2 |
8397482 | Kraemer et al. | Mar 2013 | B2 |
8398757 | Iijima et al. | Mar 2013 | B2 |
8409307 | Drnevich et al. | Apr 2013 | B2 |
8414694 | Iijinia et al. | Apr 2013 | B2 |
8424282 | Vollmer et al. | Apr 2013 | B2 |
8424601 | Betzer-Zilevitch | Apr 2013 | B2 |
8436489 | Stahlkopf et al. | May 2013 | B2 |
8448416 | Davis, Jr. et al. | May 2013 | B2 |
8453461 | Draper | Jun 2013 | B2 |
8453462 | Wichmann et al. | Jun 2013 | B2 |
8453583 | Malavasi et al. | Jun 2013 | B2 |
8454350 | Berry et al. | Jun 2013 | B2 |
8475160 | Campbell et al. | Jul 2013 | B2 |
8539749 | Wichmann et al. | Sep 2013 | B1 |
8567200 | Brook et al. | Oct 2013 | B2 |
8616294 | Zubrin et al. | Dec 2013 | B2 |
8627643 | Chillar et al. | Jan 2014 | B2 |
9869279 | Stoia | Jan 2018 | B2 |
9890955 | Freitag | Feb 2018 | B2 |
9903588 | Slobodyanskiy | Feb 2018 | B2 |
20010000049 | Kataoka et al. | Mar 2001 | A1 |
20010029732 | Bachmann | Oct 2001 | A1 |
20010045090 | Gray | Nov 2001 | A1 |
20020043063 | Kataoka et al. | Apr 2002 | A1 |
20020053207 | Finger et al. | May 2002 | A1 |
20020069648 | Levy et al. | Jun 2002 | A1 |
20020083711 | Dean | Jul 2002 | A1 |
20020187449 | Doebbeling et al. | Dec 2002 | A1 |
20030005698 | Keller | Jan 2003 | A1 |
20030075332 | Krill | Apr 2003 | A1 |
20030131582 | Anderson et al. | Jul 2003 | A1 |
20030134241 | Marin et al. | Jul 2003 | A1 |
20030221409 | McGowan | Dec 2003 | A1 |
20040006994 | Walsh et al. | Jan 2004 | A1 |
20040068981 | Siefker et al. | Apr 2004 | A1 |
20040166034 | Kaefer | Aug 2004 | A1 |
20040170559 | Hershkowitz et al. | Sep 2004 | A1 |
20040223408 | Mathys et al. | Nov 2004 | A1 |
20040238654 | Hagen et al. | Dec 2004 | A1 |
20050028529 | Bartlett et al. | Feb 2005 | A1 |
20050144961 | Colibaba-Evulet et al. | Jul 2005 | A1 |
20050197267 | Zaki et al. | Sep 2005 | A1 |
20050229585 | Webster | Oct 2005 | A1 |
20050236602 | Viteri et al. | Oct 2005 | A1 |
20050268615 | Bunker | Dec 2005 | A1 |
20060112675 | Anderson et al. | Jun 2006 | A1 |
20060112696 | Lynghjem | Jun 2006 | A1 |
20060158961 | Ruscheweyh et al. | Jul 2006 | A1 |
20060183009 | Berlowitz et al. | Aug 2006 | A1 |
20060196812 | Beetge et al. | Sep 2006 | A1 |
20060248888 | Geskes | Nov 2006 | A1 |
20060272331 | Bucker | Dec 2006 | A1 |
20070000242 | Harmon et al. | Jan 2007 | A1 |
20070022758 | Myers | Feb 2007 | A1 |
20070044475 | Leser et al. | Mar 2007 | A1 |
20070044479 | Brandt et al. | Mar 2007 | A1 |
20070089425 | Motter et al. | Apr 2007 | A1 |
20070107430 | Schmid et al. | May 2007 | A1 |
20070144747 | Steinberg | Jun 2007 | A1 |
20070231233 | Bose | Oct 2007 | A1 |
20070234702 | Hagen et al. | Oct 2007 | A1 |
20070245736 | Barnicki | Oct 2007 | A1 |
20070249738 | Haynes et al. | Oct 2007 | A1 |
20070272201 | Amano et al. | Nov 2007 | A1 |
20080000229 | Kuspert et al. | Jan 2008 | A1 |
20080006561 | Moran et al. | Jan 2008 | A1 |
20080010967 | Griffin et al. | Jan 2008 | A1 |
20080034727 | Sutikno | Feb 2008 | A1 |
20080038598 | Berlowitz et al. | Feb 2008 | A1 |
20080047280 | Dubar | Feb 2008 | A1 |
20080066443 | Frutschi et al. | Mar 2008 | A1 |
20080115478 | Sullivan | May 2008 | A1 |
20080118310 | Graham | May 2008 | A1 |
20080127632 | Finkenrath et al. | Jun 2008 | A1 |
20080155984 | Liu et al. | Jul 2008 | A1 |
20080178611 | Ding | Jul 2008 | A1 |
20080202123 | Sullivan et al. | Aug 2008 | A1 |
20080223038 | Lutz et al. | Sep 2008 | A1 |
20080250795 | Katdare et al. | Oct 2008 | A1 |
20080251234 | Wilson et al. | Oct 2008 | A1 |
20080290719 | Kaminsky et al. | Nov 2008 | A1 |
20080309087 | Evulet et al. | Dec 2008 | A1 |
20090000762 | Wilson et al. | Jan 2009 | A1 |
20090025390 | Christensen et al. | Jan 2009 | A1 |
20090038247 | Taylor et al. | Feb 2009 | A1 |
20090056342 | Kirzhner | Mar 2009 | A1 |
20090064653 | Hagen et al. | Mar 2009 | A1 |
20090071166 | Hagen et al. | Mar 2009 | A1 |
20090107141 | Chillar et al. | Apr 2009 | A1 |
20090117024 | Weedon et al. | May 2009 | A1 |
20090120087 | Sumser et al. | May 2009 | A1 |
20090133403 | Som | May 2009 | A1 |
20090145132 | Johnson | Jun 2009 | A1 |
20090157230 | Hibshman et al. | Jun 2009 | A1 |
20090193809 | Schroder et al. | Aug 2009 | A1 |
20090205334 | Aljabari et al. | Aug 2009 | A1 |
20090218821 | ElKady et al. | Sep 2009 | A1 |
20090223227 | Lipinski et al. | Sep 2009 | A1 |
20090229263 | Ouellet et al. | Sep 2009 | A1 |
20090235637 | Foret | Sep 2009 | A1 |
20090241506 | Nilsson | Oct 2009 | A1 |
20090255242 | Paterson et al. | Oct 2009 | A1 |
20090262599 | Kohrs et al. | Oct 2009 | A1 |
20090284013 | Anand | Nov 2009 | A1 |
20090301054 | Simpson et al. | Dec 2009 | A1 |
20090301099 | Nigro | Dec 2009 | A1 |
20100003123 | Smith | Jan 2010 | A1 |
20100018218 | Riley et al. | Jan 2010 | A1 |
20100031665 | Chokshi | Feb 2010 | A1 |
20100058732 | Kaufmann et al. | Mar 2010 | A1 |
20100115960 | Brautsch et al. | May 2010 | A1 |
20100126176 | Kim | May 2010 | A1 |
20100126906 | Sury | May 2010 | A1 |
20100162703 | Li et al. | Jul 2010 | A1 |
20100170253 | Berry et al. | Jul 2010 | A1 |
20100180565 | Draper | Jul 2010 | A1 |
20100229564 | Chila | Sep 2010 | A1 |
20100293957 | Chen | Nov 2010 | A1 |
20100300102 | Bathina et al. | Dec 2010 | A1 |
20100310439 | Brok et al. | Dec 2010 | A1 |
20100322759 | Tanioka | Dec 2010 | A1 |
20100326084 | Anderson et al. | Dec 2010 | A1 |
20110000221 | Minta et al. | Jan 2011 | A1 |
20110000671 | Hershkowitz et al. | Jan 2011 | A1 |
20110036082 | Collinot | Feb 2011 | A1 |
20110048002 | Taylor et al. | Mar 2011 | A1 |
20110048010 | Balcezak et al. | Mar 2011 | A1 |
20110072779 | ELKady et al. | Mar 2011 | A1 |
20110088379 | Nanda | Apr 2011 | A1 |
20110110759 | Sanchez et al. | May 2011 | A1 |
20110126512 | Anderson | Jun 2011 | A1 |
20110138766 | ELKady et al. | Jun 2011 | A1 |
20110162353 | Vanvolsem et al. | Jul 2011 | A1 |
20110162375 | Berry | Jul 2011 | A1 |
20110203287 | Chila | Aug 2011 | A1 |
20110205837 | Gentgen | Aug 2011 | A1 |
20110226010 | Baxter | Sep 2011 | A1 |
20110227346 | Klenven | Sep 2011 | A1 |
20110232545 | Clements | Sep 2011 | A1 |
20110239652 | McMahan | Oct 2011 | A1 |
20110239653 | Valeev | Oct 2011 | A1 |
20110247341 | McMahan | Oct 2011 | A1 |
20110265447 | Cunningham | Nov 2011 | A1 |
20110289898 | Hellat | Dec 2011 | A1 |
20110289899 | De La Cruz Garcia | Dec 2011 | A1 |
20110300493 | Mittricker et al. | Dec 2011 | A1 |
20110302922 | Li | Dec 2011 | A1 |
20120023954 | Wichmann | Feb 2012 | A1 |
20120023955 | Draper | Feb 2012 | A1 |
20120023956 | Popovic | Feb 2012 | A1 |
20120023957 | Draper et al. | Feb 2012 | A1 |
20120023958 | Snook et al. | Feb 2012 | A1 |
20120023960 | Minto | Feb 2012 | A1 |
20120023962 | Wichmann et al. | Feb 2012 | A1 |
20120023963 | Wichmann et al. | Feb 2012 | A1 |
20120023966 | Ouellet et al. | Feb 2012 | A1 |
20120031581 | Chillar et al. | Feb 2012 | A1 |
20120032810 | Chillar et al. | Feb 2012 | A1 |
20120085100 | Hughes et al. | Apr 2012 | A1 |
20120096870 | Wichmann et al. | Apr 2012 | A1 |
20120119512 | Draper | May 2012 | A1 |
20120131925 | Mittricker et al. | May 2012 | A1 |
20120144837 | Rasmussen et al. | Jun 2012 | A1 |
20120185144 | Draper | Jul 2012 | A1 |
20120186268 | Rofka | Jul 2012 | A1 |
20120192565 | Tretyakov et al. | Aug 2012 | A1 |
20120247105 | Nelson et al. | Oct 2012 | A1 |
20120260660 | Kraemer | Oct 2012 | A1 |
20130086916 | Oelfke et al. | Apr 2013 | A1 |
20130086917 | Slobodyanskiy | Apr 2013 | A1 |
20130091853 | Denton et al. | Apr 2013 | A1 |
20130091854 | Gupta et al. | Apr 2013 | A1 |
20130098048 | Popovic | Apr 2013 | A1 |
20130104562 | Oelfke et al. | May 2013 | A1 |
20130104563 | Oelfke et al. | May 2013 | A1 |
20130125554 | Mittricker | May 2013 | A1 |
20130125555 | Mittricker et al. | May 2013 | A1 |
20130125798 | Taylor | May 2013 | A1 |
20130232980 | Chen et al. | Sep 2013 | A1 |
20130269310 | Wichmann et al. | Oct 2013 | A1 |
20130269311 | Wichmann et al. | Oct 2013 | A1 |
20130269355 | Wichmann et al. | Oct 2013 | A1 |
20130269356 | Butkiewicz et al. | Oct 2013 | A1 |
20130269357 | Wichmann et al. | Oct 2013 | A1 |
20130269358 | Wichmann et al. | Oct 2013 | A1 |
20130269360 | Wichmann et al. | Oct 2013 | A1 |
20130269361 | Wichmann et al. | Oct 2013 | A1 |
20130269362 | Wichmann et al. | Oct 2013 | A1 |
20130283808 | Kolvick | Oct 2013 | A1 |
20130327050 | Slobodyanskiy | Dec 2013 | A1 |
20130340404 | Hughes | Dec 2013 | A1 |
20140000271 | Mittricker et al. | Jan 2014 | A1 |
20140000273 | Mittricker et al. | Jan 2014 | A1 |
20140007590 | Huntington et al. | Jan 2014 | A1 |
20140013766 | Mittricker et al. | Jan 2014 | A1 |
20140020398 | Mittricker et al. | Jan 2014 | A1 |
20140060073 | Slobodyanskiy et al. | Mar 2014 | A1 |
20140123620 | Huntington et al. | May 2014 | A1 |
20140123624 | Minto | May 2014 | A1 |
20140123659 | Biyani et al. | May 2014 | A1 |
20140123660 | Stoia | May 2014 | A1 |
20140123668 | Huntington et al. | May 2014 | A1 |
20140123669 | Huntington et al. | May 2014 | A1 |
20140123672 | Huntington et al. | May 2014 | A1 |
20140150445 | Huntington et al. | Jun 2014 | A1 |
20140182298 | Krull et al. | Jul 2014 | A1 |
20140182299 | Woodall et al. | Jul 2014 | A1 |
20140182301 | Fadde | Jul 2014 | A1 |
20140182302 | Antoniono | Jul 2014 | A1 |
20140182303 | Antoniono | Jul 2014 | A1 |
20140182304 | Antoniono | Jul 2014 | A1 |
20140182305 | Antoniono | Jul 2014 | A1 |
20140196464 | Biyani et al. | Jul 2014 | A1 |
20140216011 | Muthaiah et al. | Aug 2014 | A1 |
20140272736 | Robertson | Sep 2014 | A1 |
20140360195 | Beran | Dec 2014 | A1 |
20150000292 | Subramaniyan | Jan 2015 | A1 |
20150000293 | Thatcher et al. | Jan 2015 | A1 |
20150000294 | Minto et al. | Jan 2015 | A1 |
20150000299 | Zuo | Jan 2015 | A1 |
20150033748 | Vaezi | Feb 2015 | A1 |
20150033749 | Slobodyanskiy | Feb 2015 | A1 |
20150033751 | Andrew | Feb 2015 | A1 |
20150033757 | White et al. | Feb 2015 | A1 |
20150040574 | Wichmann et al. | Feb 2015 | A1 |
20150059350 | Kolvick et al. | Mar 2015 | A1 |
20150075171 | Sokolov et al. | Mar 2015 | A1 |
20150118019 | Maurer | Apr 2015 | A1 |
20150152791 | White | Jun 2015 | A1 |
20150198089 | Muthaiah et al. | Jul 2015 | A1 |
20150204239 | Minto et al. | Jul 2015 | A1 |
20150214879 | Huntington et al. | Jul 2015 | A1 |
20150226133 | Minto et al. | Aug 2015 | A1 |
20150377134 | Maurer | Dec 2015 | A1 |
20160076772 | Metternich | Mar 2016 | A1 |
20160109135 | Kidder | Apr 2016 | A1 |
20160186658 | Vorel et al. | Jun 2016 | A1 |
20160190963 | Thatcher et al. | Jun 2016 | A1 |
20160201916 | Allen | Jul 2016 | A1 |
20160222883 | Allen | Aug 2016 | A1 |
20160222884 | Allen | Aug 2016 | A1 |
20160223202 | Borchert | Aug 2016 | A1 |
20160265776 | Maurer | Sep 2016 | A1 |
20170108221 | Mizukami | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
2231749 | Sep 1998 | CA |
2645450 | Sep 2007 | CA |
0770771 | May 1997 | EP |
2578942 | Apr 2013 | EP |
0776269 | Jun 1957 | GB |
2117053 | Oct 1983 | GB |
WO1999006674 | Feb 1999 | WO |
WO1999063210 | Dec 1999 | WO |
WO2007068682 | Jun 2007 | WO |
2008023986 | Feb 2008 | WO |
WO2008142009 | Nov 2008 | WO |
WO2011003606 | Jan 2011 | WO |
WO2012003489 | Jan 2012 | WO |
WO2012128928 | Sep 2012 | WO |
WO2012128929 | Sep 2012 | WO |
WO2012170114 | Dec 2012 | WO |
WO2013147632 | Oct 2013 | WO |
WO2013147633 | Oct 2013 | WO |
WO2013155214 | Oct 2013 | WO |
WO2013163045 | Oct 2013 | WO |
WO2014071118 | May 2014 | WO |
WO2014071215 | May 2014 | WO |
WO2014133406 | Sep 2014 | WO |
Entry |
---|
PCT International Search Report and Written Opinion; Application No. PCT/US2016/016632; dated May 10, 2016; 13 pages. |
U.S. Appl. No. 15/059,143, filed Mar. 2, 2016, Ilya Aleksandrovich Slobodyanskiy. |
U.S. Appl. No. 15/060,089, filed Mar. 3, 2016, Srinivas Pakkala. |
U.S. Appl. No. 15/009,780, filed Jan. 28, 2016, Richard A. Huntington. |
U.S. Appl. No. 14/771,450, filed Feb. 28, 2013, Valeen et al. |
U.S. Appl. No. 14/067,552, filed Sep. 9, 2014, Huntington et al. |
U.S. Appl. No. 14/553,458, filed Nov. 25, 2014, Huntington et al. |
U.S. Appl. No. 14/599,750, filed Jan. 19, 2015, O'Dea et al. |
U.S. Appl. No. 14/712,723, filed May 14, 2015, Manchikanti et al. |
U.S. Appl. No. 14/726,001, filed May 29, 2015, Della-Fera et al. |
U.S. Appl. No. 14/741,189, filed Jun. 16, 2015, Minto et al. |
U.S. Appl. No. 14/745,095, filed Jun. 19, 2015, Minto et al. |
Ahmed, S. et al. (1998) “Catalytic Partial Oxidation Reforming of Hydrocarbon Fuels,” 1998 Fuel Cell Seminar, 7 pgs. |
Air Products and Chemicals, Inc. (2008) “Air Separation Technology—Ion Transport Membrane (ITM),” www.airproducts.com/ASUsales, 3 pgs. |
Air Products and Chemicals, Inc. (2011) “Air Separation Technology Ion Transport Membrane (ITM),” www.airproducts.com/gasification, 4 pgs. |
Anderson, R. E. (2006) “Durability and Reliability Demonstration of a Near-Zero-Emission Gas-Fired Power Plant,” California Energy Comm., CEC 500-2006-074, 80 pgs. |
Baxter, E. et al. (2003) “Fabricate and Test an Advanced Non-Polluting Turbine Drive Gas Generator,” U. S. Dept. of Energy, Nat'l Energy Tech. Lab., DE-FC26-00NT 40804, 51 pgs. |
Bolland, O. et al. (1998) “Removal of CO2 From Gas Turbine Power Plants Evaluation of Pre- and Postcombustion Methods,” SINTEF Group, www.energy.sintef.no/publ/xergi/98/3/art-8engelsk.htm, 11 pgs. |
BP Press Release (2006) “BP and Edison Mission Group Plan Major Hydrogen Power Project for California,” www.bp.com/hydrogenpower, 2 pgs. |
Bryngelsson, M. et al. (2005) “Feasibility Study of CO2 Removal From Pressurized Flue Gas in a Fully Fired Combined Cycle—The Sargas Project,” KTH—Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 9 pgs. |
Clark, Hal (2002) “Development of a Unique Gas Generator for a Non-Polluting Power Plant,” California Energy Commission Feasibility Analysis, P500-02-011F, 42 pgs. |
Foy, Kirsten et al. (2005) “Comparison of Ion Transport Membranes” Fourth Annual Conference on Carbon Capture and Sequestration, DOE/NETL; 11 pgs. |
Cho, J. H. et al. (2005) “Marrying LNG and Power Generation,” Energy Markets; 10, 8; ABI/INFORM Trade & Industry, 5 pgs. |
Ciulia, Vincent. (2001-2003) “Auto Repair. How the Engine Works,” http://autorepair.about.com/cs/generalinfo/a/aa060500a.htm, 1 page. |
Corti, A. et al. (1988) “Athabasca Mineable Oil Sands: The RTR/Gulf Extraction Process Theoretical Model of Bitumen Detachment” 4th UNITAR/UNDP Int'l Conf. on Heavy Crude and Tar Sands Proceedings, v.5, paper No. 81, Edmonton, AB, Canada, 4 pgs. |
Science Clarified (2012) “Cryogenics,” http://www.scienceclarified.com/Co-Di/Cryogenics.html; 6 pgs. |
Defrate, L. A. et al. (1959) “Optimum Design of Ejector Using Digital Computers” Chem. Eng. Prog. Symp. Ser., 55 ( 21), 12 pgs. |
Ditaranto, M. et al. (2006) “Combustion Instabilities in Sudden Expansion Oxy-Fuel Flames,” ScienceDirect, Combustion and Flame, v.146, 20 pgs. |
Elwell, L. C. et al. (2005) “Technical Overview of Carbon Dioxide Capture Technologies for Coal-Fired Power Plants,” MPR Associates, Inc., www.mpr.com/uploads/news/co2-capture-coal-fired.pdf, 15 pgs. |
Eriksson, Sara. (2005) “Development of Methane Oxidation Catalysts for Different Gas Turbine Combustor Concepts.” KTH—The Royal Institute of Technology, Department of Chemical Engineering and Technology, Chemical Technology, Licentiate Thesis, Stockholm Sweden; 45 pgs. |
Ertesvag, I. S. et al. (2005) “Exergy Analysis of a Gas-Turbine Combined-Cycle Power Plant With Precombustion CO2 Capture,” Elsevier, 35 pgs. |
Elkady, Ahmed. M. et al. (2009) “Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture,” ASME J. Engineering for Gas Turbines and Power, vol. 131, 6 pgs. |
Evulet, Andrei T. et al. (2009) “On the Performance and Operability of GE's Dry Low NOx Combustors utilizing Exhaust Gas Recirculation for Post-Combustion Carbon Capture” Energy Procedia I, 8 pgs. |
Caldwell Energy Company (2011) “Wet Compression”; IGTI 2011—CTIC Wet Compression, http://www.turbineinletcooling.org/resources/papers/CTIC_WetCompression_Shepherd_ASMETurboExpo2011.pdf , 22 pgs. |
Luby, P. et al. (2003) “Zero Carbon Power Generation: IGCC as the Premium Option,” Powergen International, 19 pgs. |
Macadam, S. et al. (2007) “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” Clean Energy Systems, Inc.; presented at the 2nd International Freiberg Conference on IGCC & XtL Technologies, 6 pgs. |
Morehead, H. (2007) “Siemens Global Gasification and IGCC Update,” Siemens, Coal-Gen, 17 pgs. |
Nanda, R. et al. (2007) “Utilizing Air Based Technologies as Heat Source for LNG Vaporization,” presented at the 86th Annual convention of the Gas Processors of America (GPA 2007), San Antonio, TX; 13 pgs. |
Reeves, S. R. (2001) “Geological Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Research and Commercial-Scale Field Demonstration Project,” SPE 71749; presented at the 2001 SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 10 pgs. |
Reeves, S. R. (2003) “Enhanced Coalbed Methane Recovery,” Society of Petroleum Engineers 101466-DL; SPE Distinguished Lecture Series, 8 pgs. |
Richards, Geo A., et al. (2001) “Advanced Steam Generators,” National Energy Technology Lab., Pittsburgh, PA, and Morgantown, WV; NASA Glenn Research Center (US), 7 pgs. |
Rosetta, M. J. et al. (2006) “Integrating Ambient Air Vaporization Technology with Waste Heat Recovery—A Fresh Approach to LNG Vaporization,” presented at the 85th annual convention of the Gas Processors of America (GPA 2006), Grapevine, Texas, 22 pgs. |
Snarheim, D. et al. (2006) “Control Design for a Gas Turbine Cycle With CO2 Capture Capabilities,” Modeling, Identification and Control, vol. 00; presented at the 16th IFAC World Congress, Prague, Czech Republic, 10 pgs. |
Ulfsnes, R. E. et al. (2003) “Investigation of Physical Properties for CO2/H2O Mixtures for use in Semi-Closed O2/CO2 Gas Turbine Cycle With CO2-Capture,” Department of Energy and Process Eng., Norwegian Univ. of Science and Technology, 9 pgs. |
Van Hemert, P. et al. (2006) “Adsorption of Carbon Dioxide and a Hydrogen-Carbon Dioxide Mixture,” Intn'l Coalbed Methane Symposium (Tuscaloosa, AL) Paper 0615, 9 pgs. |
Zhu, J. et al. (2002) “Recovery of Coalbed Methane by Gas Injection,” Society of Petroleum Engineers 75255; presented at the 2002 SPE Annual Technical Conference and Exhibition, Tulsa, Oklahoma, 15 pgs. |
Number | Date | Country | |
---|---|---|---|
20160222884 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62112123 | Feb 2015 | US |