TURBINE WHEEL AND METHOD FOR THE PRODUCTION THEREOF

Information

  • Patent Application
  • 20120315149
  • Publication Number
    20120315149
  • Date Filed
    February 07, 2011
    13 years ago
  • Date Published
    December 13, 2012
    11 years ago
Abstract
The invention relates to a turbine wheel (1) composed of a turbine wheel blank (2), having a turbine wheel back (3) and having a weld peg (Z) which is arranged on the turbine wheel back (3) via a transition region (5) provided with an undercut (4), wherein the undercut (4) is already provided in the turbine wheel blank (2).
Description

The invention relates to a turbine wheel according to the preamble of claim 1 and to a method for the production thereof, according to the preamble of claim 3.


The so-called rotor of a turbocharger has a turbine wheel and the turbocharger shaft which can be connected to the turbine wheel via a weld peg arranged on the back of the turbine wheel. For said connection, it is possible for the shaft and the turbine wheel to be connected to one another using a welding process (for example friction welding or electron beam welding). A turbine wheel TR for such a welding process is illustrated in highly simplified schematic form in FIGS. 4 and 5. The turbine wheel TR has the said wheel back R and a weld peg Z which, after the casting process, is mechanically machined along the dash-dotted line SZ with two recesses for piston rings. The vertical region of the dash-dotted line SZ constitutes the end of the grinding zone. Furthermore, according to FIG. 5, an undercut FS is produced at the transition between the wheel back R and the weld peg in a further machining step, which undercut can be seen from FIG. 5.



FIG. 6 shows, by way of example, an embodiment of a turbine wheel TR which again has a wheel back R and a weld peg Z which can be connected by means of a welding process to the shaft not shown in FIG. 6 (or in FIGS. 4 and 5) of the turbocharger. Out of principle, in the case of said rotor, the additional machining for producing an undercut as shown in FIG. 5 should no longer be necessary. However, tests carried out within the context of the invention have shown that a corner E is formed at the transition between the grinding zone and the non-machined part of the turbine wheel because the grinding disk must maintain a distance from the wheel back R, which can in turn lead to a collision between the rotor and the bearing housing LG.


It is therefore an object of the present invention to provide a turbine wheel according to the preamble of claim 1 and to a method for the production thereof according to the preamble of claim 3, wherein it should be possible to avoid an additional machining step for creating an undercut in the transition region between the weld peg and the wheel back of the turbine wheel.


Said object is achieved by means of the features of claim 1 and of claim 3.


The invention achieves the stated object in a surprisingly simple manner in that, by means of a suitable casting process, the undercut can be provided already in the turbine wheel blank, such that after the casting process, only that region of the weld peg which up to the transition region, which is already provided with the undercut in any case, of the turbine wheel blank need be mechanically machined. Consequently, in contrast to the prior art, a further machining step is eliminated. Furthermore, after the casting process, that region of the weld peg which is machined for example by means of a grinding disk forms a continuous transition region with the undercut which is integrated during the casting process, which continuous transition region has a positive effect on the strength of the rotor composed of turbine wheel and rotor shaft.


The subclaims relate to advantageous refinements of the invention.





Further details, features and advantages of the invention will emerge from the following description of exemplary embodiments on the basis of the drawing, in which:



FIG. 1A shows a schematically highly simplified illustration of a turbine wheel according to the invention,



FIG. 1B shows the detail X, encircled by an oval in FIG. 1A, in an enlarged illustration,



FIG. 2 shows an illustration of a turbine wheel blank,



FIG. 3 shows an illustration, corresponding to FIG. 2, of a turbine wheel blank according to the prior art, and



FIGS. 4 to 6 show drawings relating to the prior art recognized in the introductory part of the description.






FIG. 1 shows a schematically highly simplified illustration of a turbine wheel 1 according to the invention, which turbine wheel has a wheel back 3 and a weld peg Z integrally formed on the wheel back 3. Here, the contour illustrated with the dashed line by the double arrow 2 indicates the turbine wheel blank which can be produced by means of a casting process, for example a precision casting process.


After the casting of the turbine wheel blank 2, the latter is machined as far as the arrow “End of grinding zone”, wherein that region 6 of the dashed line which extends as far as the arrow “End of grinding zone” is removed for example by means of a grinding process, so as to yield a contour of the points 7 and 8 of the line visible in FIG. 1A for the finished turbine wheel 1, which in the example comprises two grooves for holding piston rings (not illustrated in any more detail in FIG. 1A). As can be seen from FIG. 1A, a collision with the bearing housing LG, as explained on the basis of FIG. 6, can therefore no longer occur. Here, the detail X according to FIG. 1B shows, after the machining by removal of the dashed line 6, a cylindrical region 9, a slight elevation 10 which adjoins said cylindrical region 9, and the undercut 4 which, on account of the removal of the region 6 from the turbine wheel blank 2, lies only a short distance below the region 9 and is therefore at a slightly shorter distance from the central axis.


The undercut in the transition region 5 can accordingly be seen more clearly from FIG. 2, which shows the blank 2 before the machining of the region 6. Because the region 6 has not yet been removed here, the undercut 4 in the transition region is more pronounced.


The design of the undercut 4 is even clearer in comparison with the prior art, which is illustrated once again in FIG. 3 for the purpose of comparison. From said illustration, it is clear that the transition region 5 has no undercut proceeding from the region 6 to subsequently be machined, such that machining as explained on the basis of FIGS. 4 and 5 is necessary in this case.


Accordingly, the method according to the invention for producing a turbine wheel 1 is restricted to the casting of the turbine wheel blank 2 which is provided with the weld peg Z and the turbine wheel back 3, with the above-explained undercut 4 being produced in the transition region 5 during the casting of the turbine wheel blank 2.


Accordingly, only the above-explained region 6 need be machined after the casting in order to produce the finished turbine wheel 1 from the blank 2.


In addition to the above written disclosure, to complete the latter, reference is hereby explicitly made to FIGS. 1A, 1B and 2.


LIST OF REFERENCE SYMBOLS




  • 1 Turbine wheel


  • 2 Turbine wheel blank


  • 3 Turbine wheel back


  • 4 Undercut


  • 5 Transition region


  • 6 Region to be removed


  • 7, 8 Ends of the finished turbine wheel contour


  • 9 Cylindrical region


  • 10 Elevation

  • TR Turbine wheel

  • R Wheel back

  • Z Weld peg

  • SZ Grinding zone

  • FS Undercut machining

  • LG Bearing housing


Claims
  • 1. A turbine wheel (1) composed of a turbine wheel blank (2), having a turbine wheel back (3); andhaving a weld peg (Z) which is arranged on the turbine wheel back (3), wherein the turbine wheel back (3) transitions to the weld peg (Z) via a transition region (5) provided with an undercut (4),wherein the undercut (4) is already provided in the turbine wheel blank (2).
  • 2. The turbine wheel as claimed in claim 1, wherein the turbine wheel blank (2) is formed as a precision-cast part.
  • 3. The turbine wheel as claimed in claim 1, wherein the undercut (4) is formed free from parting flash of a parting joint.
  • 4. A method for producing a turbine wheel (1), having the following method steps: casting a turbine wheel blank (2) having a turbine wheel back (3) and a weld peg (Z) which is integrally formed on the turbine wheel back (3)), wherein the turbine wheel back (3) transitions to the weld peg (Z) via a transition region (5),in that wherein, during the casting of the turbine wheel blank (2), an undercut (4) is generated in the transition region (5).
  • 5. The method as claimed in claim 4, wherein a precision casting process is used as a casting process.
  • 6. The method as claimed in claim 4, wherein the weld peg (4) is machined mechanically in a region (6) which ends before the undercut (4).
  • 7. The method as claimed in claim 6, wherein a grinding process or a turning process is used as a production process.
Priority Claims (1)
Number Date Country Kind
102010008555.3 Feb 2010 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US11/23868 2/7/2011 WO 00 8/3/2012