Turbines having a debris release chute

Abstract
In a hydroelectric turbine having a rotor disposed within a housing, the rotor having an annular outer rim received by a channel in the housing, the improvement comprising providing at least one debris release chute in said housing such that debris captured between the rotor and the housing is released through the debris release chute.
Description
BACKGROUND OF THE INVENTION

This invention relates generally to the field of turbines or power plants that produce electricity by harnessing the flow of a liquid, in particular water, and more particularly relates to such devices wherein the liquid flow causes rotation of a large propeller-type or impellor-type rotor having an annular outer rim disposed within a large annular housing.


Production of electricity using large turbines is well known. Typically, hydroelectric turbines are mounted in dams such that controlled liquid flow causes rotation of a propeller-type rotor or blades. Such relatively rapid water flow conditions are known as high head conditions. It is also known to place turbines in low head conditions, such as produced by tidal flow in a bay, at the mouth of a river or offshore. Such turbines are typically mounted onto large support shafts.


While most turbines are constructed to have a central rotating shaft onto which the blades or runners are mounted, it is also known to produce open-centered turbines, also known as rim-mounted turbines. Turbines having open-centered rotors, where the blades are mounted between inner and outer annular rings or rims and where the energy is transferred through the outer rim to an annular housing that retains the rotor, can be particularly successful in low head conditions, i.e., in slower currents.


Examples of open center, rim-mounted turbines can be seen in U.S. Pat. No. 5,592,816 issued Jan. 14, 1997, and reissued as RE38,336 on Dec. 2, 2003, U.S. Pat. No. 6,648,589 issued Nov. 18, 2003, U.S. Pat. No. 6,729,840 issued May 4, 2004, and U.S. Patent Appl. Publication US2005/0031442 published Feb. 10, 2005 (Ser. No. 10/633,865). Examples of hydroelectric turbines used in low head (tidal flow) conditions can be seen in U.S. Pat. No. 4,421,990 to Heuss et al., U.S. Pat. Nos. 6,168,373 and 6,406,251 to Vauthier, UK Patent Appl. No. GB 2,408,294 to Susman et al., and WIPO International Publication WO 03/025385 to Davis et al.


Liquid powered turbines are seen as environmentally safe replacements for electrical power plants that utilize fossil fuels or atomic energy. In harnessing water to produce electricity on a large scale capable of powering industrial complexes, towns, cities, etc., it is necessary to provide large numbers of turbines, and it is necessary that the turbines be as large as practical in order to maximize the amount of electricity produced by each turbine. The rotor blades of these turbines are multiple meters in length, with some experimental designs having blades exceeding 50 meters in length.


As the length of the rotor blades is increased, structural and manufacturing challenges are presented that are not encountered in smaller turbines or generators. For shaft-mounted turbines, it is difficult to provide long blades that are both strong and light. In one solution, the blades of the shaft-mounted turbine are provided with an outer annular rim, which is contained within an annular housing, thereby providing support to the blades through the shaft and the rim. Alternatively, rim-mounted turbines with no central shaft provide a solution to this problem by providing annular support to the inner and outer ends of the blade, with the outer support rim being retained within a housing having an annular slot or channel. In a typical means for generation of electrical power, a large number of magnets are spaced along the annular support rim and a large number of coils are spaced along the receiving channel in the stator housing. The magnetic field established by the rotor field system passes across the gap that separates the rotor and the stator. Rotation of the rotor causes the magnetic flux linkage with the coils to change, inducing an electro-magnetic force in the coils.


Because the annular outer rim of the rotor is received within a channel in the stator housing, liquid-borne debris may be captured within the channel. Any significant accumulation of debris will interfere with rotation of the rotor and may cause damage. The accumulation of debris may be most problematic in low head conditions, such as with a tidal flow generator, since it is easier for debris to settle into the housing channel from the relatively slow moving water.


It is an object of this invention to provide an improved structure for a turbine having an annular outer rim disposed on the rotor blades, the outer rim being retained within a channel disposed in a housing, such that accumulation of debris in the channel is minimized or eliminated. It is a further object to provide such a turbine wherein one or more debris release chutes are disposed in the housing channel, such that debris captured between the rotor outer rim and the channel housing will drop out or be flushed from the turbine.


SUMMARY OF THE INVENTION

The invention is an improved liquid powered turbine, preferably water powered, of the type wherein the rotor blades are supported by an annular outer rim and the outer rim is maintained within or received by a housing having a channel to receive the outer rim. In a typical construction, the turbine is a generator in that magnets are disposed on the rotor outer rim and coils are disposed in the housing or stator channel, such that rotation of the rotor within the stator produces electricity. The improvement is particularly beneficial wherein the turbine is of the type that is submerged in a body of water that provides low head conditions, such that the rate of water flow through the turbine is relatively slow.


The improvement comprises providing one or more debris release chutes, channels or openings in the housing channel, such that any debris captured between the rotor outer rim and the housing channel can escape by passage through the debris release chutes, either as a result of gravity effects or by the flushing effect of liquid movement through the debris chutes.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a view of a representative turbine, in this case an open-center, rim-mounted turbine, the turbine comprising a rotor having an outer annular rim and a stator housing having a channel to receive the rotor outer rim, as seen from the axial perspective.



FIG. 2 is a perspective view of the stator housing.



FIG. 3 is a perspective view of the rotor.



FIG. 4 is a partial cross-sectional view taken along line IV-IV of FIG. 1, showing the debris chute disposed in the stator housing.





DETAILED DESCRIPTION OF THE INVENTION

With reference to the drawings, the invention will now be described in detail with regard for the best mode and the preferred embodiment. In a most general sense, the invention is a turbine for the production of electricity. In a typical representative embodiment, the turbine comprises a rotor mounted within a stator housing, the rotor having an annular outer rim that is received and retained by an annular channel or slot in the stator housing. The electricity generator means may comprise the combination of a large number of magnets disposed on the rotor annular rim and a large number of coils disposed on the interior of the stator housing, preferably within the channel that receives the rotor annular rim, although other generator means may be utilized. For purposes of illustration, the turbine is shown in the drawings as an open-center, rim-mounted rotor, such that all support for the rotor is provided by the stator housing, but it is to be understood that the invention also applies to a turbine having a shaft-mounted rotor with an outer annular rim. It is also to be understood that the invention is applicable to any turbine having an outer rim received within a housing regardless of the type of electricity generator means chosen.


As shown generally in FIGS. 1 through 3, the invention is a turbine or power plant 10 comprising a generally annular housing 30. The configuration of housing 30 shown is not meant to be limiting, as other configurations are possible provided the housing 30 accomplishes among other purposes the retaining of the rotating assembly or rotor 20 against undesired movement in either axial or radial direction and the allowing of rotation of the rotor 20 about the rotational axis. Housing 30 comprises a pair of retaining flanges 31 that define a channel 32 to receive and retain the rotor 20.


The rotating assembly or rotor 20 comprises an inner annular rim member 23 and an annular outer rim member 22, the rims 22 and 23 preferably being relatively thin in the direction perpendicular to the central rotation axis. Extending between inner rim 23 and outer rim 22 are a plurality of propellers, runners or blade members 21, the blades 21 being angled or twisted in known manner such that movement of liquid in the axial direction and through the stator housing 30 results in rotation of the rotor 20. The particular number, configuration and material composition of the blades 21 may vary, but preferably the blades 21 are constructed to be as lightweight as possible without excessively sacrificing structural integrity.


In most circumstances the turbine 10 is oriented such that the axis of the rotor 20 is generally horizontal such that the blades 21 rotate in a generally vertical plane. The annular channel 32 of the housing 30 is thus also oriented so as to occupy a generally vertical plane. Because of this, the channel 32, and in particular the lowermost portion of the channel 32, becomes a receptacle for any debris that is captured between the rotor 20 and the housing 30, the debris being deposited as the driving liquid passes through the turbine 10. This problem of debris accumulation in the housing channel 32 is especially present in hydroelectric turbines 10 used in low head situations, such as turbines 10 that are powered by tidal flow. The relatively slow movement of the water, coupled with the relatively high concentration of debris, presents circumstances where significant amounts of debris may be captured between the rotor 20 and the housing 30. Rotation of the rotor 20 within the stationary housing 30 in conjunction with gravity effects results in the debris accumulating in the channel 32 and particularly in the bottom of the channel 32. If the accumulation amount is significant, either in terms of the amount of debris or the size of discrete objects, rotation of the rotor 20 may be adversely affected by increased friction effects, such that the efficiency of the turbine is reduced. Furthermore, the accumulated debris may damage the surfaces of the rotor 20 or the channel 32, which may be particularly harmful where the turbine utilizes magnets and coils mounted in the outer rim 22 and the channel 32.


To address the issue of debris accumulation, the housing 30 is provided with one or more debris release chutes, channels or openings 50, as shown in FIG. 4, such that any debris captured within the channel 32 has a means of escape or release. The debris release chutes 50 are preferably oriented, in use, generally downward, such that gravity effects will encourage release of the debris. Although not required, at least one of the debris release chutes 50 is most preferably disposed directly in the bottom or lowermost portion of the housing channel 32. Because the rotation effects of the turbine 10 may result in debris movement within the channel 32 in the circumferential direction, the debris release chutes 50 may be positioned at intervals about the entire channel 32, including in the upper portion above horizontal. The particular size, orientation and configuration of the debris release chutes 50 are matters of engineering design choice and may vary from that shown in the drawing. For example, while the debris release chute 50 is shown in FIG. 4 as being perpendicular to the axis of rotation of the turbine 10, the debris release chutes 50 may be oriented in non-perpendicular directions. Likewise, while the debris release chute 50 in FIG. 4 has parallel walls, the debris release chutes may be formed such that the bore increases or decreases in dimension.


It is to be understood that equivalents and substitutions for certain elements set forth above may be obvious to those skilled in the art, and therefore the true scope and definition of the invention is to be as set forth in the following claims.

Claims
  • 1. A liquid powered turbine comprising a rotor having an outer rim mounted on blades, a housing having a channel receiving said outer rim of said rotor, wherein at least one debris release chute is disposed in said channel and extends unoccluded through said housing, such that debris captured between said rotor outer rim and said housing channel is released through said at least one debris release chute, wherein said at least one debris release chute is positioned, in use, in a lower portion of said housing channel.
  • 2. The turbine of claim 1, wherein said at least one debris release chute is, in use, downwardly oriented.
  • 3. The turbine of claim 1, wherein said at least one debris release chute comprises a plurality of debris release chutes.
  • 4. The turbine of claim 3, wherein all of said debris release chutes are, in use, downwardly oriented.
  • 5. The turbine of claim 3, wherein said plurality of debris release chutes are positioned about said housing channel such that some of said debris release chutes are, in use, in an upper portion of said housing channel.
Priority Claims (1)
Number Date Country Kind
06014703 Jul 2006 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2007/006236 7/13/2007 WO 00 9/29/2009
Publishing Document Publishing Date Country Kind
WO2008/006603 1/17/2008 WO A
US Referenced Citations (117)
Number Name Date Kind
228467 Maclay Jun 1880 A
928536 Pino Jul 1909 A
1710103 Nelson Apr 1929 A
2054142 Sharp Sep 1936 A
2470797 Thomas May 1949 A
2501696 Souczek Mar 1950 A
2563279 Rushing Aug 1951 A
2658453 Walters Nov 1953 A
2782321 Fischer Feb 1957 A
2792505 Baudry May 1957 A
2874547 Fiore Feb 1959 A
3078680 Wapsala Feb 1963 A
3209156 Struble, Jr. Sep 1965 A
3292023 Korber Dec 1966 A
3342444 Nelson Sep 1967 A
3355998 Roemisch Dec 1967 A
3384787 Schwartz May 1968 A
3422275 Braikevitch et al. Jan 1969 A
3477236 Burrus Nov 1969 A
3487805 Satterthwaite et al. Jan 1970 A
3708251 Pierro Jan 1973 A
3986787 Mouton Oct 1976 A
3987638 Burkhardt et al. Oct 1976 A
4095918 Mouton et al. Jun 1978 A
4163904 Skendrovic Aug 1979 A
4219303 Mouton et al. Aug 1980 A
4274009 Parker, Sr. Jun 1981 A
4367413 Nair Jan 1983 A
4421990 Heuss et al. Dec 1983 A
4427897 Migliori Jan 1984 A
4523878 Richart et al. Jun 1985 A
4541367 Lindberg Sep 1985 A
4613762 Soderholm Sep 1986 A
4720640 Anderson et al. Jan 1988 A
4740711 Sato et al. Apr 1988 A
4744697 Coppens May 1988 A
4744698 Dallimer et al. May 1988 A
4810135 Davenport et al. Mar 1989 A
4867605 Myers et al. Sep 1989 A
4868408 Hesh Sep 1989 A
4868970 Schultz et al. Sep 1989 A
4990810 Newhouse Feb 1991 A
5592816 Williams Jan 1997 A
5606791 Fougere et al. Mar 1997 A
5609441 Khachaturian Mar 1997 A
5656880 Clark Aug 1997 A
5662434 Khachaturian Sep 1997 A
5715590 Fougere et al. Feb 1998 A
5800093 Khachaturian Sep 1998 A
5998905 Fougere et al. Dec 1999 A
6039506 Khachaturian Mar 2000 A
6109863 Milliken Aug 2000 A
6166472 Pinkerton Dec 2000 A
6168373 Vauthier Jan 2001 B1
6232681 Johnston et al. May 2001 B1
6242840 Denk et al. Jun 2001 B1
6300689 Smalser Oct 2001 B1
6367399 Khachaturian Apr 2002 B1
6406251 Vauthier Jun 2002 B1
6409466 Lamont Jun 2002 B1
6445099 Roseman Sep 2002 B1
6476709 Wuidart et al. Nov 2002 B1
6612781 Jackson Sep 2003 B1
6648589 Williams Nov 2003 B2
RE38336 Williams Dec 2003 E
6729840 Williams May 2004 B2
6770987 Sogard et al. Aug 2004 B1
6777851 Maslov Aug 2004 B2
6806586 Wobben Oct 2004 B2
6840713 Schia et al. Jan 2005 B1
6843191 Makotinsky Jan 2005 B1
6857821 Steenhuis et al. Feb 2005 B2
6957947 Williams Oct 2005 B2
7190087 Williams Mar 2007 B2
D543495 Williams May 2007 S
7275891 Owen et al. Oct 2007 B2
7352078 Gehring Apr 2008 B2
7378750 Williams May 2008 B2
7425772 Novo Vidal Sep 2008 B2
7471009 Davis et al. Dec 2008 B2
7527006 Khachaturian May 2009 B2
7611307 Owen et al. Nov 2009 B2
7845296 Khachaturian Dec 2010 B1
7874788 Stothers et al. Jan 2011 B2
8310077 Pearce Nov 2012 B2
20020034437 Williams Mar 2002 A1
20030044272 Addie et al. Mar 2003 A1
20030137149 Northrup et al. Jul 2003 A1
20030168864 Heronemus et al. Sep 2003 A1
20030193198 Wobben Oct 2003 A1
20030218338 O'Sullivan et al. Nov 2003 A1
20040021437 Maslov et al. Feb 2004 A1
20040201299 Naritomi et al. Oct 2004 A1
20040227500 O'Meara Nov 2004 A1
20040232792 Enfourth Nov 2004 A1
20040262926 Hansen Dec 2004 A1
20050005592 Fielder Jan 2005 A1
20050031442 Williams Feb 2005 A1
20060261597 Gehring Nov 2006 A1
20070018459 Williams Jan 2007 A1
20070063448 Kowalczyk Mar 2007 A1
20070231072 Jennings et al. Oct 2007 A1
20070291426 Kasunich et al. Dec 2007 A1
20080012538 Stewart et al. Jan 2008 A1
20090278357 Williams Nov 2009 A1
20100025998 Williams Feb 2010 A1
20100026002 Spooner Feb 2010 A1
20100068037 Ives Mar 2010 A1
20100172698 Ives et al. Jul 2010 A1
20100201129 Holstein et al. Aug 2010 A1
20100232885 Ives et al. Sep 2010 A1
20100295388 Ives et al. Nov 2010 A1
20110018274 Ives et al. Jan 2011 A1
20110088253 Ives et al. Apr 2011 A1
20110110770 Spooner et al. May 2011 A1
20120187680 Spooner et al. Jul 2012 A1
20120235412 Dunne et al. Sep 2012 A1
Foreign Referenced Citations (96)
Number Date Country
2388513 Aug 2000 CA
2352673 Jan 2003 CA
260699 Apr 1947 CH
146935 Aug 1983 CH
3116740 Nov 1982 DE
3638129 May 1988 DE
3718954 Dec 1988 DE
19948198 Apr 2001 DE
10101405 Jul 2002 DE
20308901 Sep 2003 DE
10244038 Apr 2004 DE
102007016380 Oct 2008 DE
1318299 Dec 2003 EP
1564455 Jan 2005 EP
1691377 Feb 2006 EP
1876350 Jan 2008 EP
1878912 Jan 2008 EP
1878913 Jan 2008 EP
1879280 Jan 2008 EP
1878911 Sep 2008 EP
1992741 Nov 2008 EP
1885047 Dec 2008 EP
1980670 Jul 2009 EP
2088311 Aug 2009 EP
2110910 Oct 2009 EP
2112370 Oct 2009 EP
1980746 Jun 2010 EP
2199199 Jun 2010 EP
2199598 Jun 2010 EP
2199599 Jun 2010 EP
2199601 Jun 2010 EP
2199602 Jun 2010 EP
2199603 Jun 2010 EP
2200170 Jun 2010 EP
2071709 Sep 2010 EP
2209175 Sep 2010 EP
2241749 Oct 2010 EP
2302204 Mar 2011 EP
2302755 Mar 2011 EP
2302766 Mar 2011 EP
2823177 Oct 2002 FR
2859495 Mar 2005 FR
204505 Oct 1923 GB
924347 Apr 1963 GB
980575 Jan 1965 GB
1131352 Oct 1968 GB
1413835 Nov 1975 GB
2316461 Feb 1998 GB
2344843 Jun 2000 GB
2408294 May 2005 GB
2431628 May 2007 GB
2434413 Jul 2007 GB
2447514 Sep 2008 GB
59203881 Nov 1984 JP
63055370 Mar 1988 JP
01043908 Feb 1989 JP
2000341818 Dec 2000 JP
2005069025 Mar 2005 JP
2005248822 Sep 2005 JP
2006094645 Apr 2006 JP
2007255614 Oct 2007 JP
2007291882 Nov 2007 JP
9844372 Oct 1998 WO
9852819 Nov 1998 WO
9966623 Dec 1999 WO
0077393 Dec 2000 WO
0134973 May 2001 WO
0134977 May 2001 WO
02099950 Dec 2002 WO
03014561 Feb 2003 WO
WO03025385 Mar 2003 WO
WO 03025385 Mar 2003 WO
03046375 Jun 2003 WO
2004015264 Feb 2004 WO
2004027257 Apr 2004 WO
2004107549 Dec 2004 WO
2004113717 Dec 2004 WO
2005045243 May 2005 WO
2005061887 Jul 2005 WO
2005078233 Aug 2005 WO
WO2005080789 Sep 2005 WO
2005116443 Dec 2005 WO
2006029496 Mar 2006 WO
2007043894 Apr 2007 WO
2007055585 May 2007 WO
2007083105 Jul 2007 WO
2007086814 Aug 2007 WO
2007125349 Nov 2007 WO
2008004877 Jan 2008 WO
2008006614 Jan 2008 WO
2008050149 May 2008 WO
2008081187 Jul 2008 WO
WO2008081187 Jul 2008 WO
WO2011039249 Apr 2011 WO
WO2011039255 Apr 2011 WO
WO2011039267 Jul 2011 WO
Non-Patent Literature Citations (9)
Entry
PCT International Search Report for International Application No. PCT/EP2007/006236 dated Aug. 31, 2007.
PCT Written Opinion of International Searching Authority (Aug. 31, 2007).
PCT Request for Processing of International Application (Jul. 13, 2007).
U.S. Appl. No. 13/133,235, filed Jun. 7, 2011, including the specification, claims and drawings.
U.S. Appl. No. 13/133,805, filed Jun. 9, 2011, including the specification, claims and drawings.
U.S. Appl. No. 13/133,504, filed Jun. 8, 2011, including the specification, claims and drawings.
U.S. Appl. No. 13/133,507, filed Jun. 8, 2011, including the specification, claims and drawings.
U.S. Appl. No. 13/133,832, filed Jun. 9, 2011, including the specification, claims and drawings.
U.S. Appl. No. 13/264,667, filed Oct. 14, 2011, including specification, claims and drawings.
Related Publications (1)
Number Date Country
20100068037 A1 Mar 2010 US