The present invention relates generally to error-correction coding and, more particularly, to a decoder for parallel convolutional codes, i.e., turbo codes.
A new class of forward error control codes, referred to as turbo codes, offers significant coding gain for power limited communication channels. Turbo codes are generated using two recursive systematic encoders operating on different orderings of the same information bits. A subset of the code bits of each encoder is transmitted in order to maintain bandwidth efficiency. Turbo decoding involves an iterative algorithm in which probability estimates of the information bits that are derived for one of the codes are fed back to a probability estimator for the other code. Each iteration of processing generally increases the reliability of the probability estimates. This process continues, alternately decoding the two code words until the probability estimates can be used to make reliable decisions.
The maximum a posteriori (MAP) type algorithm introduced by Bahl, Cocke, Jelinek, and Raviv in “Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate”, IEEE Transactions on Information Theory, March 1974, pp. 284–287, is particularly useful as a component decoder in decoding parallel concatenated convolutional codes, i.e., turbo codes. The MAP algorithm is used in the turbo decoder to generate a posteriori probability estimates of the systematic bits in the code word. These probability estimates are used as a priori symbol probabilities for the second MAP decoder. Three fundamental terms in the MAP algorithm are the forward and backward state probability functions (the alpha and beta functions, respectively) and the a posteriori transition probabilities (the sigma function).
It is desirable to provide a control and data handling structure for a turbo decoder which allows for a programmable interleaver, variable block length, and multiple code rates.
A control for a turbo decoder utilizing a MAP decoding algorithm comprises an address generator for addressing systematic data symbols, parity data symbols, and systematic likelihood ratios according to a pre-determined memory mapping. A control signal indicates which of a plurality of component code words comprising a turbo code word is being decoded, each employing the same memory mapping. The systematic data symbol values are accessed in the order required by the alpha, beta and gamma functions of the MAP decoding algorithm such that interleaving and de-interleaving functions in the MAP decoding algorithm are performed in real-time, i.e., without delay. The systematic symbol and parity symbol contributions to the gamma function of the MAP decoding algorithm are computed in parallel using parallel channel transition probability look-up tables, such that the channel transition probabilities required in the gamma calculations are accessed at the same rate as the likelihood ratios. This memory-mapping in combination with other data handling functions (e.g., multiplexing, combinatorial logic and parallel processing) minimizes memory requirements for the turbo decoder and enables the use of programmable interleavers, variable block lengths, and multiple code rates.
Turbo Decoder Structure
A MAP decoder provides estimates of the a posteriori probabilities of the states and transitions of a Markov source through a discrete memory-less channel. The transition probabilities of a discrete memory-less channel depend on the transitions X1τ of the Markov source and the observations Y1τ such that for a sequence,
where R(•|•) defines the channel probabilities.
The MAP decoder uses the received sequence Y1τ to estimate the a posteriori state and transition probabilities of the Markov source.
where St is the state of the source at time t.
The alpha, beta and gamma functions are set forth as follows:
αt(m)=Pr{St=m;Y1t} 4
βt(m)=Pr{Yt+1τ|St=m} 5
and
γt(m′,m)=Pr{St=m;Yt|St−1=m′} 6
so that
λt(m)=αt(m)•βt(m) 7
and
σt(m′, m)=αt−1(m′)•γt(m′, m)•βt(m) 8
The alpha function is computed from the following recursion:
The beta function is calculated using the following recursion:
Finally, the gamma function is defined as follows:
where pt(m|m′) are the transition probabilities of the Markov source, and qt(X|m′,m) is the distribution of the source's output symbols conditioned on the source's state transitions.
Turbo codes are constructed as two recursive systematic codes concatenated in parallel. A MAP decoder for a turbo code generates a probability estimate of the information bits in a component code word, based on one of the two recursive systematic codes comprising the turbo code, and provides this information to a second MAP decoder which decodes the other component code word of the turbo code. The second decoder uses these probabilities as a priori information and generates new estimates of the information bits in the code word. The updated estimates are provided to the first MAP component decoder, which in turn, generates updated estimates. This feedback process continues a finite number of times, and a decision on the information bits is made based on the final probability estimates. Each operation of a component MAP decoder is referred to as a half iteration, and a typical number of iterations is eight.
The two parallel component codes in a turbo code are referred to herein as the top code and the bottom code. Normally, the data is encoded by the top code and is interleaved using either a fixed block interleaver or a random interleaver before being encoded by the bottom code.
It is to be noted that two component MAP decoders 12 and 14 are shown by way of illustration. However, it is to be understood that a single MAP decoder that is time-multiplexed to decode both the top and bottom codes may likewise be employed.
The systematic bit probability estimates are computed using the a posteriori transition or σt(m′,m) probabilities. The sum of all a posteriori transition probabilities resulting from the same channel symbol is the a posteriori probability symbol estimate. The output of a MAP component decoder is an a posteriori probability estimate of the systematic symbols, denoted as APPt(0) and APPt(1), as set forth in the following expression:
where the summation is over all σt(m′,m) values where the systematic bit corresponding to the transition (m′,m) is k.
The calculated a posteriori systematic bit probabilities are stored in memory as likelihood ratios, that is, APPt(1)/APPt(0).
Although the description herein is given with respect to non-logarithmic functions, it is to be understood that a logarithmic implementation is preferred for many applications. To this end, the mathematical expressions herein may converted to logarithmic expressions in known fashion.
There are four sigma blocks 50 which calculate the sigma values for the transitions in the trellis. These blocks also compute an update of the a posteriori probability associated with each of the data (systematic) bits in the code word. The probability of the transmitted bit being zero (AP0R, AP0L) is computed simultaneously with the probability of the bit being one (AP1R, AP1L). Since symbol-by-symbol MAP decoding involves both forward (from the beginning to the end of the received component code word) and backward (from the end to the beginning of the received component code word) recursive calculations, as described in U.S. patent application Ser. No. 09/137,260, filed Aug. 20, 1998, the turbo decoder processes the received symbols comprising the received component code words of the received turbo code word sequentially from the first received to the last received for the forward recursion and from the last received symbol to first for the backward recursion substantially simultaneously. These operations are performed in parallel in order to minimize the delay which would otherwise result from serial sigma block calculations. For brevity, the forward recursions are referred to herein as processing received symbols comprising the component code words from the left and the backward recursions as processing symbols from the right side of the code word, and the resulting calculated values will be subscripted with L and R, respectively.
In an ASIC implementation of a turbo code, for example, it is particularly desirable to perform the interleaving and de-interleaving operations as efficiently as possible. It is also desirable that the interleaving and de-interleaving operations be performed in real time, that is, essentially without delay, in order to maximize decoding speed. The turbo decoder structure of
The output of the address generator is provided to a de-interleaver definition block 60, a bottom code parity data block 62, and a top code parity data block 64. A control signal is generated by a top/bottom code select block 66 for controlling multiplexers 68 and 70. In particular, the output of the de-interleaver definition block is an address, which is used to address the received systematic symbols and a priori log-likelihood ratios. Multiplexer 68 selects, via the signal from block 66, either the address generated by the address generator or the address generated by the de-interleaver definition. The output address is applied to a systematic likelihood ratio circuit 72, both directly and through a delay block 74. The address selected by multiplexer 68 is also applied to a systematic data memory block 76. The data and likelihood ratio are applied to component MAP decoder 12. A feedback loop for the iterative MAP decoding process is shown through the likelihood ratio block. As to the parity data, the address generated by the address generator is provided to bottom code parity data block 62 and top code parity data block 64. The output of one or the other is selected via multiplexer 70 and provided as an input to MAP decoder 12.
A preferred implementation of likelihood ratio circuit 72 is illustrated in
As representative,
R(Yt
where Xt
where APt(k) is the a priori probability for the systematic bit at trellis level t. Furthermore, the only values that the parity symbol can assume are 0 and 1 so that at any trellis level, there can be only four possible non-zero values for gamma.
γt,00(m′,m)=APt(0)•R(Yt
γt,01(m′,m)=APt(0)•R(Yt
γt,10(m′,m)=APt(1)•R(Yt
γt,11(m′,m)=APt(1)•R(Yt
Each gamma calculation requires two multiplication functions and depends only on the a priori bit probability and the received symbol for the trellis level. Each set of gamma functions for a trellis index t requires the a priori bit probability for 0 and 1 and four channel probability computations.
Advantageously, by using multiplexers 94, 96, 98 in the gamma calculator, as shown, multiple code rates may be supported. Multiple code rates are constructed by puncturing the parity data of the top and bottom component codes. Specifically, multiplexer. 98 (P Sd) are switched according to the puncturing pattern; and multiplexer. 94 (I Sel) and multiplexers 96 (AP Sel) are used to control feedback in to turbo decoding algorithm. Puncturing involves selectively neutralizing the parity bit contribution of the gamma calculation of equation 15. Neutralizing of the parity portion of the gamma calculation is performed in the gamma calculator using a multiplexers 98.
In an exemplary embodiment, when the controller signifies that a parity bit is punctured, the gamma calculator eliminates the third term in the calculation of the set of gamma values for that symbol. If the puncturing rate of the parity bits is greater than ½, and, at minimum, every other symbol is punctured, then every two memory locations in the parity memory will contain at most one symbol.
Referring back to
The four gamma values for index tR are routed to the alpha block, and the four gamma values for index tL are routed to the beta block. In a recursive systematic code (n, k) for which k=1, i.e., one bit shifted into the encoder, the alpha and beta recursions each have only two terms in their summations. The two non-zero terms for each state of the trellis are known under certain code restrictions and can be hard-wired. Within the alpha and beta blocks, the matching of the feedback portion of the recursion with the correct value is performed using multiplexers. The multiplexers are controlled by switches which identify the correct gamma matching for state in and systematic bit k, where TS(m, k) identifies the trellis connection for state m and systematic bit k.
Since the alpha and beta recursions begin at opposite ends of the code-word, there is not enough information available to compute the sigma values until each recursion is half finished. At such time, all of the sigma values which reside at trellis indexes following both the alpha and beta blocks can be calculated. For a sixteen-state recursive systematic code there will be sixty-four such values. Fortunately, these can be naturally grouped into four categories using equation 12. In a recursive systematic code with sixteen states, there are sixteen elements in the summation. In one cycle of the alpha and beta recursions, equation 12 can be invoked four times. The four summations simultaneously compute APPt
Until the point where the sigma-AP blocks can compute a posteriori transition probabilities, the alpha and beta probabilities are buffered, which requires considerable memory. There must be enough memory to buffer half of the alpha and beta functions for the block. For a sixteen-state code, and a block length of five hundred twelve information bits, the memory requirement is 16•2•512/2=8192 words. Longer blocks require additional memory, as do terminating tails on the component codes. This memory is implemented as thirty-two separate memories, one for each state of the alpha and beta recursions. Advantageously, in accordance with preferred embodiments of the present invention, the control for the memories comprises a low-complexity design. The memories can be written to consecutive locations starting at the first location. When the iteration is half completed, the memories can be read, starting from the last location written and decrementing until the iteration is completed. Both the alpha and beta memories share the same control.
Routing of the alpha and beta values to the sigma-AP block is controlled by multiplexers in the alpha and beta blocks, which select the feedback path in the recursion. These multiplexers match the alpha and beta values generated in real-time in the alpha and beta blocks, respectively, with the beta and alpha values respectively buffered in memory.
The sigma calculations also require the gamma values. For this operation, there are two gamma calculator blocks which calculate and supply the sigma-AP block with the four possible gamma values for the trellis indices tR and tL. Separate gamma-calc-cells are used to allow selective neutralizing of the systematic contribution of the gamma value and/or the a priori portion of the gamma value. Matching of the appropriate alpha, beta, and gamma values in equation 8 is performed with the selection switches described hereinabove. The gamma-calc-cells which have outputs provided to the sigma-AP blocks require the same input bit probabilities and channel probabilities as the gamma-calc-cells which support the alpha and beta recursions.
The outputs of the sigma-AP blocks are updated systematic bit probabilities. These probabilities are converted into likelihood ratios and written to the likelihood ratio memory for use with the subsequent iteration. The memory locations that these likelihood ratios must be written to can be derived from the read address of the likelihood ratio memory. The write address is simply a delayed copy of the read address. The delay required is the propagation delay of the information through the circuit. Typically, this delay will be about five cycles of the alpha/beta recursion period. All circuits, except the alpha/beta update circuit, can operate with multiple cycles without any significant decoding speed loss.
The computation of the channel probability function R(•|•) is performed using a look-up table. In an exemplary implementation, the input data sequence Y1τ is quantized into 64 levels, and a lookup table containing the 128 different values 64 levels (bit values 0 and 1) of the function R(•|•) is pre-computed. When a specific value of the channel probability function is required, the pre-computed value can be read from the table and provided to the gamma block. The memory required to store the 128 table elements is small, and the performance loss due to 64 level (6 bit) quantization of the inputs is minimal.
Typically, a MAP decoder requires data in an order consistent with that of the output of the encoder. In accordance with preferred embodiments described herein, however, the MAP decoder may compute the alpha, beta, and sigma functions in parallel and thus require data in a different order, that is, forward and backward with respect to the trellis structure.
In order to use a single address generator 30 for the systematic data samples, the likelihood ratio samples, and the parity data samples, a separate memory is utilized for each, as illustrated in
The bottom code is supported with a similar data path structure, including an additional memory comprising the de-interleaver mapping, or definition (block 60 of
The use of memory, as described hereinabove, allows real-time interleaving and de-interleaving. And since the memory can be pre-loaded, an arbitrary interleaver and a variable size block length for the turbo code are easily supportable. In order to change the interleaver structure, a new interleaver definition is merely downloaded. And for a block-length change, a new de-interleaver definition and a change in the address generator's sequence are needed.
In order to support a MAP decoder which computes the alpha and beta recursions simultaneously, the address generator needs to be able to access the systematic data and likelihood ratios for the alpha and beta recursions simultaneously. A sequential counter may be used for this purpose. In particular, the data corresponding to trellis level τ is placed in address number 0 for the beta recursion, and the data corresponding to trellis level 1 is place in address number 1 for the alpha recursion. The data is alternately stored in this manner such that the data can be addressed with an address generator with the sequence [0 1 2 3 . . . ]. Since the data corresponding to trellis level 1 is the last value required by the beta recursion, and the data corresponding to trellis level τ is the last value required in the alpha recursion, the address generator would comprise the following sequence [0 1 2 3 4 5 . . . τ−1 τ−1 τ−2 . . . 3 2 1 0]. In such case, the data for the alpha recursion comprise the even locations in the sequence, for example, and the data for the beta recursion comprise the odd locations in the sequence. A similar type of memory mapping would result in alpha recursion data in the odd locations and beta recursion data in the even locations. This memory mapping is used for the systematic data memory, the parity data memory, and the likelihood ratio memory. In the particular sequence represented hereinabove, this address generator supports a variable size block length by changing the maximum address τ−1.
Further efficiency improvement in memory mapping can be achieved where the puncture rate is at least ½, i.e., every other symbol, by dividing the sequence [1 2 3 4 5 . . τ τ τ−1 τ−2 . . . 3 2 1] by two, addressing the parity data with the new sequence, and controlling the gamma calculator with a punctured signal.
The bottom code requires different parity values, but requires the same likelihood values and systematic data values as the top code. The difference is that the bottom code requires the likelihood values and systematic data values in a different order, as a result of interleaving.
Parity data is treated differently from systematic data and likelihood ratios. Since the parity data for the bottom code is independent from the top code parity data, separate memories could be provided for the parity data. However, for practical reasons, they may be implemented using the same physical memory with the top and bottom codes occupying different portions of the same memory.
Physical separation of memories would not generally be practical for the systematic data since double the memory space would be required. And physical separation is not possible for the likelihood ratio memory because the same likelihood ratio is required for both the top code and the bottom code and because they are each updated during each half-iteration of the turbo decoder. A solution is to use a separate memory for storing the interleaver definition. When the decoder is decoding the bottom code, it reads the interleaver with the address sequence [0 1 2 3 4 5 . . . τ−1 τ−1 τ−2 . . . 3 2 1 0]. The output of the interleaver is then used for the systematic data address and the likelihood ratio address. Since the interleaver comprises a one-to-one mapping, such a structure would support an arbitrary interleaver structure.
As illustrated in
Computation of the systematic and parity contributions to the gamma function in parallel requires two identical channel transition probability tables. Each time that channel probability R(y|0) is accessed for received symbol y, a corresponding value is required for R(y|1). Hence, for each single look-up table access, the values for both R(y|0) and R(y|1) may be provided. Advantageously, therefore, by using parallel circuits for the systematic and parity components and by returning two channel probabilities per table access, the eight required channel probabilities can be accessed at the same rate as the likelihood memory.
Specifically, as illustrated in
An alternative embodiment allows for terminated recursive systematic convolutional (RSC) codes for the top and bottom code, and for a merging of the component codes after 512 trellis levels. The merging of the component codes at trellis level 512 permits decoding of a longer block length by computing the alpha and beta recursions for the two sections separately (in time), but requires only the memory in the alpha and beta cells to decode a block of length 512 information bits. Both the termination of the component codes and the merging of the component codes at trellis level 512 (if the block length is larger than 512) are handled the same way. For this embodiment, separate memory locations are used for the systematic portions of the code-word. To this end, the systematic components of the top code are placed in memory such that the sequence [0 1 2 3 4 . . . τ−1 τ−1 τ−2 τ−3 . . . 3 2 1 0] will access the correct data for that code, and the merging sections of the bottom code are placed in memory cells separate from those of the top code. These memory locations are accessed by loading the interleaver with the appropriate addresses. Advantageously, since the bottom code accesses the data through the interleaver anyway, no additional circuitry is required. The number of trellis levels required to merge the trellis is equal to the memory of the code m, an exemplary value being four.
While the preferred embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions will occur to those of skill in the art without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.
This application is a continuation of pending U.S. patent application Ser. No. 09/519,903 filed on Mar. 7, 2000 now U.S. Pat. No. 6,516,437 entitled Turbo Decoder Control for Use With a Programmable Interleaver, Variable Block Length, and Multiple Code Rates.
Number | Name | Date | Kind |
---|---|---|---|
5933462 | Viterbi et al. | Aug 1999 | A |
6005897 | McCallister et al. | Dec 1999 | A |
6192084 | Miyauchi et al. | Feb 2001 | B1 |
6226773 | Sadjadpour | May 2001 | B1 |
6304996 | Van Stralen et al. | Oct 2001 | B1 |
6343368 | Lerzer | Jan 2002 | B1 |
6381728 | Kang | Apr 2002 | B1 |
6385753 | Hatakeyama | May 2002 | B1 |
6393072 | Ross et al. | May 2002 | B1 |
6400290 | Langhammer et al. | Jun 2002 | B1 |
6434203 | Halter | Aug 2002 | B1 |
6477679 | Such et al. | Nov 2002 | B1 |
6477681 | Taipale et al. | Nov 2002 | B1 |
6484283 | Stephen et al. | Nov 2002 | B1 |
6557139 | Bohnke | Apr 2003 | B1 |
6563877 | Abbaszadeh | May 2003 | B1 |
6574766 | Obuchi et al. | Jun 2003 | B1 |
6580767 | Koehler et al. | Jun 2003 | B1 |
6580796 | Kuroki | Jun 2003 | B1 |
6598204 | Giese et al. | Jul 2003 | B1 |
6675348 | Hammons et al. | Jan 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20030126550 A1 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09519903 | Mar 2000 | US |
Child | 10356872 | US |