The present subject matter relates generally to combustor assemblies for turbo machines. More specifically, the present subject matter relates to attachment mechanisms to combustor assembly components.
Turbo machines, such as gas turbine engines, include combustor assemblies manufactured using welds, brazes, or other bonding processes, such as at a swirler or mixer assembly, a dome assembly, or a deflector assembly. These processes are generally effective in manufacturing combustor assemblies. However, such processes during assembly are costly and complex. Additionally, when a combustor assembly is to be disassembled for repair or refurbishment (e.g., the deflector), such bonding processes result in partial or complete destruction of one or more other components of the combustor during disassembly (e.g., the mixer or the dome) during the process of accessing, disassembling, and replacing another component such as the deflector. Such destruction, such as of the mixer or dome generally, necessitates replacing one or more of these components even if there would have been sufficient structural life but for the need to disassemble the combustor to access or replace other components, such as the deflector.
As such, there is a need for structures that enable disassembly and replacement of components of the combustor without partial or complete destruction of other components as a result of the assembly and disassembly process.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
Embodiments of a combustor assembly for a turbine engine are generally provided. The combustor assembly includes a first separable portion defining a dome assembly, and a second separable portion defining a deflector assembly. The first separable portion and the second separable portion are coupled together at a fitted interface.
In one embodiment, the fitted interface defines a press fit, an interference fit, a snap fit, or a threaded fit.
In various embodiments, the first separable portion defines a plurality of threads corresponding to the fitted interface. In one embodiment, the first separable portion defines a male threaded interface, and the second threaded portion defines a female threaded interface.
In still various embodiments, the fitted interface defines a bayonet structure at the first separable portion and the second separable portion. In one embodiment, the bayonet structure includes a clip defining a slot at the first separable portion into which the second separable portion is disposed when attached to the first separable portion. In another embodiment, the clip defines a radially extended portion and a circumferentially extended portion. The slot is defined between the circumferentially extended portion and a body portion of the mixer assembly. In yet another embodiment, the clip defines a groove at one or more of the circumferentially extended portion of the first separable portion. The second separable portion is disposed in the groove when attached to the first separable portion.
In still yet various embodiments, the combustor assembly further includes a mechanical fastener disposed through the first separable portion and the second separable portion. In one embodiment, the mechanical fastener is disposed through a groove defined through the first separable portion or the second separable portion.
In one embodiment, the fitted interface defines a key including a first radially extended portion at the first separable portion and a second radially extended portion at the second separable portion.
Embodiments of a gas turbine engine including the combustor assembly are generally provided. The combustor assembly includes the first separable portion defining a dome assembly and the second separable portion defining a mixer assembly. The first separable portion and the second separable portion are coupled together at a fitted interface.
In one embodiment, the fitted interface between the dome assembly and the mixer assembly defines a press fit, an interference fit, a snap fit, or a threaded fit.
In various embodiments, the first separable portion of the dome assembly defines a plurality of threads corresponding to the fitted interface. In one embodiment, the first separable portion of the dome assembly defines a male threaded interface, and the second threaded portion of the mixer assembly defines a female threaded interface.
In still various embodiments, the fitted interface between the dome assembly and the mixer assembly defines a bayonet structure at the first separable portion and the second separable portion. In one embodiment, the bayonet structure includes a clip defining a slot at the second separable portion of the mixer assembly into which the first separable portion of the dome assembly is disposed when attached to the second separable portion. In another embodiment, the clip defines a radially extended portion and a circumferentially extended portion. The slot is defined between the circumferentially extended portion and a body portion of the mixer assembly.
In one embodiment, the combustor assembly further includes a mechanical fastener disposed through a groove defined through the first separable portion or the second separable portion.
In another embodiment, the fitted interface defines a key including a first radially extended portion at the first separable portion of the dome assembly and a second radially extended portion at the second separable portion of the mixer assembly.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components.
The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows.
Embodiments of a combustor assembly for a turbo machine are generally provided that includes structures that enable disassembly and replacement of components of the combustor without partial or complete destruction of other components as a result of the assembly and disassembly process. Various embodiments of the combustor assembly provided herein improve combustor assembly cost of manufacture, repair, and component replacement, such as by obviating welds, brazes, or other bonding processes at portions of the combustor assembly such as described herein. For example, various embodiments of the combustor assembly shown and described herein provide for assembly and disassembly of a dome assembly and/or mixer assembly to a deflector assembly without welds, brazes, or other bonding processes, such as to enable re-use of the dome assembly and/or mixer assembly when disassembling from the deflector assembly. As such, the deflector assembly, generally exposed to high temperatures and high temperature gradients, may be replaced without necessitating replacement of the dome assembly and/or mixer assembly, which are generally exposed to lower temperatures and lower temperature gradients.
Referring now to the drawings, wherein identical numerals indicate the same elements throughout the figures,
In general, the engine 10 includes a fan section 14 and a core engine 16 disposed downstream from the fan section 14. The exemplary core engine 16 depicted generally includes a substantially tubular outer casing 18 that defines an annular inlet 20. The outer casing 18 encases, in serial flow relationship, a compressor section 21 including a booster or low pressure (LP) compressor 22 and a high pressure (HP) compressor 24; a combustion section 26; a turbine section 31 including a high pressure (HP) turbine 28 and a low pressure (LP) turbine 30; and a jet exhaust nozzle section 32. A high pressure (HP) shaft 34 drivingly connects the HP turbine 28 to the HP compressor 24, together defining a HP spool. A low pressure (LP) shaft drivingly connects the LP turbine 30 to the LP compressor 22, together defining an LP spool. It should be appreciated that other embodiments of the engine 10 not depicted may further an intermediate pressure (IP) spool defined by an IP compressor drivingly connected to an IP turbine via an IP shaft, in which the IP spool is disposed in serial flow relationship between the LP spool and the HP spool.
For the embodiment depicted, the fan section 14 includes a variable pitch fan 38 having a plurality of fan blades 40 coupled to a disk 42 in a spaced apart manner. As depicted, the fan blades 40 extend outwardly from the disk 42 generally along the radial direction R. Each fan blade 40 is rotatable relative to the disk 42 about a pitch axis P by virtue of the fan blades 40 being operatively coupled to a suitable actuation member 44 configured to collectively vary the pitch of the fan blades 40 in unison. The fan blades 40, disk 42, and actuation member 44 are together rotatable about the longitudinal axis 12 by LP shaft 36 across a power gear assembly 46. The power gear assembly 46 includes a plurality of gears for providing a different rotational speed of the fan section 14 relative to the LP shaft 36, such as to enable a more efficient fan speed and/or LP spool rotational speed.
Referring still to the exemplary embodiment of
During operation of the engine 10, a volume of air 58 enters the turbofan 10 through an associated inlet 60 of the nacelle 50 and/or fan section 14. As the volume of air 58 passes across the fan blades 40, a first portion of the air 58 as indicated by arrows 62 is directed or routed into the bypass airflow passage 56 and a second portion of the air 58 as indicated by arrow 64 is directed or routed into the LP compressor 22. The ratio between the first portion of air 62 and the second portion of air 64 is commonly known as a bypass ratio. The pressure of the second portion of air 64 is then increased as it is routed through the high pressure (HP) compressor 24 and into the combustion section 26, where it is mixed with a liquid and/or gaseous fuel and burned to produce combustion gases 66.
The combustion gases 66 are routed through the HP turbine 28 where a portion of thermal and/or kinetic energy from the combustion gases 66 is extracted via sequential stages of HP turbine stator vanes 68 that are coupled to the outer casing 18 and HP turbine rotor blades 70 that are coupled to the HP shaft 34, thus causing the HP shaft to rotate, thereby supporting operation of the HP compressor 24. The combustion gases 66 are then routed through the LP turbine 30 where a second
portion of thermal and kinetic energy is extracted from the combustion gases 66 via sequential stages of LP turbine stator vanes 72 that are coupled to the outer casing 18 and LP turbine rotor blades 74 that are coupled to the LP shaft 36, thus causing the LP shaft or spool 36 to rotate, thereby supporting operation of the LP compressor 22 and/or rotation of the fan 38.
The combustion gases 66 are subsequently routed through the jet exhaust nozzle section 32 of the core engine 16 to provide propulsive thrust. Simultaneously, the pressure of the first portion of air 62 is substantially increased as the first portion of air 62 is routed through the bypass airflow passage 56 before it is exhausted from a fan nozzle exhaust section 76 of the turbofan 10, also providing propulsive thrust. The HP turbine 28, the LP turbine 30, and the jet exhaust nozzle section 32 at least partially define a hot gas path 78 for routing the combustion gases 66 through the core engine 16.
It should be appreciated, however, that the exemplary engine 10 depicted in
Referring now to
As shown in
The combustion section 26 may also include a combustor assembly 118 comprising an annular dome assembly 120 mounted upstream of the combustion chamber 110 that is configured to be coupled to the forward ends of the outer and inner liners 102, 104. More particularly, the combustor assembly 118 includes an inner annular dome 122 attached to the forward end of the inner liner 104 and an outer annular dome 124 attached to the forward end of the outer liner 102.
As shown in
In addition to directing air into first cavity 136 and the combustion chamber 110, the inner and outer cowls 128, 130 may direct a portion of the compressed air around the outside of the combustion chamber 110 to facilitate cooling liners 102 and 104. For example, as shown in
In certain exemplary embodiments, the inner dome 122 may be formed integrally as a single annular component, and similarly, the outer dome 124 may also be formed integrally as a single annular component. In still certain embodiments, the inner dome 122 and the outer dome 124 may together be formed as a single integral component. In still various embodiments, the dome assembly 120, including one or more of the inner dome 122, the outer dome 124, the outer linter 102, or the inner liner 104, may be formed as a single integral component. It should be appreciated, however, that in other exemplary embodiments, the inner dome 122 and/or the outer dome 124 may alternatively be formed by one or more components joined in any suitable manner. For example, with reference to the outer dome 124, in certain exemplary embodiments, the outer cowl 130 may be formed separately from the outer dome 124 and attached to the forward end of the outer dome 124 using, e.g., a welding process, a mechanical fastener, a bonding process or adhesive, or a composite layup process. Additionally, or alternatively, the inner dome 122 may have a similar configuration.
The combustor assembly 118 further includes a plurality of mixer assemblies 142 spaced along a circumferential direction between the outer annular dome 124 and the inner dome 122. In this regard, a plurality of circumferentially-spaced contoured cups 144 may be formed in the annular dome assembly 120, and each cup 144 defines an opening in which a swirler, cyclone, or mixer assembly 142 is mounted, attached, or otherwise integrated for introducing the air/fuel mixture into the combustion chamber 110. Notably, compressed air may be directed from the combustion section 26 into or through one or more of the mixer assemblies 142 to support combustion in the upstream end of the combustion chamber 110.
A liquid and/or gaseous fuel is transported to the combustion section 26 by a fuel distribution system (not shown), where it is introduced at the front end of a burner in a highly atomized spray from a fuel nozzle. In an exemplary embodiment, each mixer assembly 142 may define an opening for receiving a fuel injector 146 (details are omitted for clarity). The fuel injector 146 may inject fuel in an axial direction (i.e., along longitudinal axis 116) as well as in a generally radial direction, where the fuel may be swirled with the incoming compressed air. Thus, each mixer assembly 142 receives compressed air from annular opening 132 and fuel from a corresponding fuel injector 146. Fuel and pressurized air are swirled and mixed together by mixer assemblies 142, and the resulting fuel/air mixture is discharged into combustion chamber 110 for combustion thereof.
The combustion section 26 may further comprise an ignition assembly (e.g., one or more igniters extending through the outer liner 102) suitable for igniting the fuel-air mixture. However, details of the fuel injectors and ignition assembly are omitted in
Referring still to
Compressed air (e.g., 126) flows into the annular opening 132 where a portion of the air 126 will be used to mix with fuel for combustion and another portion will be used for cooling the dome deflector assembly 160. Compressed air may flow around the fuel injector 146 and through the mixing vanes around the circumference of the mixing assemblies 142, where compressed air is mixed with fuel and directed into the combustion chamber 110. Another portion of the air enters into a cavity 136 defined by the annular dome assembly 120 and the inner and outer cowls 128, 130. The compressed air in cavity 136 is used, at least in part, to cool the annular dome assembly 120 and the deflector assembly 160.
Referring now to
Referring to the exploded views generally provided in regard to
In one embodiment, the slot 232 is defined via the clip 231 extended from the first separable portion 210, such as generally depicted in regard to
Referring to
Referring now to
In various embodiments, the plurality of threads 218 at the fitted interface 215 includes a male threaded interface and a female threaded interface. The fitted interface 215 may generally define the female threaded interface of the plurality of threads 218 along the outer diameter or surrounding surface over an inner diameter or inner surface. For example, referring to
Referring still to
All or part of the combustor assembly 118 including the first separable portion 210 of the mixer assembly 142 and the second separable portion 220 of the deflector assembly 160 may be manufactured by one or more processes or methods known in the art, such as, but not limited to, machining processes, additive manufacturing, layups, casting, or combinations thereof. The combustor assembly 118 may include any suitable material for a combustor assembly 118 for a turbine engine 10, such as, but not limited to, iron and iron-based alloys, steel and stainless steel alloys, nickel and cobalt-based alloys, titanium and titanium-based alloys, ceramic or metal matrix composites, or combinations thereof.
In various embodiments, the fitted interface 215 defines a press fit, an interference fit, or a snap fit. For example, referring to
Embodiments of the combustor assembly 118 shown and described herein may include coupling or attaching the first separable portion 210 to the second separable portion 220 at the fitted interface 215 via one or more methods including press fit, tight fit, interference fit, threading, or combinations thereof. Methods or processes for joining the first separable portion 210 and the second separable portion 220 include heating an outer diameter (e.g., the second separable portion 220 in regard to
In still various embodiments of the combustor assembly 118 shown and described herein, a mechanical fastener 240 (
Still further, the groove 217 in regard to
Alternatively, the first separable portion 210 and the second separable portion 220 may be disposed such as generally shown in regard to
Referring to
Various embodiments of the combustor assembly 118 generally provided herein may define the first separable portion 210 and the second separable portion 220 to couple the deflector assembly 160, defined at least in part by the second separable portion 220, to the dome assembly 120 of the combustor assembly 118. In one embodiment, the first separable portion 210 may define, at least in part, the dome assembly 120. In other embodiments, the mixer assembly 142 may be at least partially coupled to or fixed to the dome assembly 120. For example, the deflector assembly 160 defined at least in part by the second separable portion 220 may be coupled to the dome assembly 120 and/or mixer assembly 142 via one or more methods or structures generally provided herein, such as, but not limited to, a press fit, an interference fit, or a snap fit.
It should be appreciated that the various embodiments of the combustor assembly 118 shown and described herein include the first separable portion 210 and the second separable portion 220 configured to affix and remove from one another without welding, brazing, or other forms of bonding in which disassembly, separation, or disconnection of the first separable portion 210 from the second separable portion 220 results in partial or complete damage or destruction of one or another of the portions 210, 220. For example, disassembly of the combustor assembly 118 including the first separable portion 210 and the second separable portion 220 may include applying heat to an outer surface or diameter or removing heat (i.e., cooling) from an inner surface or diameter such as to open tolerances that enable parting the first separable portion 210 and the second separable portion 220 without partial or complete destruction to either portion 210, 220.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This application is a divisional of U.S. patent application Ser. No. 16/110,162, filed on Aug. 23, 2018, the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3742704 | Adelizzi et al. | Jul 1973 | A |
4870818 | Suliga | Oct 1989 | A |
4914918 | Sullivan | Apr 1990 | A |
5117637 | Howell | Jun 1992 | A |
5355670 | Sciocchetti | Oct 1994 | A |
5916142 | Snyder et al. | Jun 1999 | A |
6212870 | Thompson | Apr 2001 | B1 |
6415609 | Vacek et al. | Jul 2002 | B1 |
6530227 | Young et al. | Mar 2003 | B1 |
7121095 | McMasters et al. | Oct 2006 | B2 |
7475678 | Douyama et al. | Jan 2009 | B2 |
7581402 | Parker | Sep 2009 | B2 |
7673460 | Hernandez et al. | Mar 2010 | B2 |
7926281 | Commaret et al. | Apr 2011 | B2 |
8943835 | Corsmeier | Feb 2015 | B2 |
9021812 | Pardington et al. | May 2015 | B2 |
9341374 | Ramier et al. | May 2016 | B2 |
9683739 | Hicks | Jun 2017 | B2 |
9850911 | Dayalan et al. | Dec 2017 | B2 |
20040143967 | Caldwell et al. | Jul 2004 | A1 |
20090078797 | Hernandez et al. | Mar 2009 | A1 |
20130283803 | Bunel | Oct 2013 | A1 |
20160153660 | Drake et al. | Jun 2016 | A1 |
20160169521 | Drake et al. | Jun 2016 | A1 |
20160201915 | Williams et al. | Jul 2016 | A1 |
20160377292 | Prociw | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
1576698 | Feb 2005 | CN |
107120682 | Sep 2017 | CN |
1486732 | Dec 2004 | EP |
Number | Date | Country | |
---|---|---|---|
20220325889 A1 | Oct 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16110162 | Aug 2018 | US |
Child | 17651743 | US |