None.
The present invention relates generally to improved systems and methods for performing turbo equalization and decoding of multiple-input multiple-output (“MIMO”) underwater acoustic communications.
Wireless underwater communication using an acoustic channel as the physical layer for communication is desirable for many types of scientific and commercial endeavors in the ocean. However, the underwater acoustic (“UWA”) channel presents many unique challenges for the design of underwater communication systems. Some of these challenges include time-varying multipath signals due to reflections off the moving surface waves and rough ocean bottom, which can cause echoes and signal interference. Further, relative motion of a transmitter, communication medium, and a receiver induces Doppler spread of the signal. In addition, noise is introduced by wind, shipping traffic, and various forms of ocean life, which can mask a portion of the signal and block the corresponding carried data. These challenges can cause the UWA signal to fluctuate randomly and as a result make the selection of modulation and error correction techniques very challenging.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. The present invention is defined by the claims.
At a high level, aspects of this disclosure provide technologies for underwater communication systems and, in some embodiments in particular, systems and methods that utilize a soft-decision adaptive turbo equalization scheme. The data reuse technique may be adopted such that the adaptive equalizer itself performs channel equalization and iterative symbol detection, enabling the usage of a posteriori soft decisions for the equalizer adaptation and the soft interference cancellation. Hence, two layers of iterative processing may occur, a first layer of symbol detection where information about a received signal is iteratively exchanged between an adaptive equalizer and a soft decoder, and a second layer inside the adaptive equalizer itself. Attributed to the better fidelity of the a posteriori soft decisions as compared with the a priori soft decisions employed in other adaptive turbo equalization, the soft-decision adaptive turbo equalization not only provides robust detection performance but also is very efficient in terms of spectral utilization and processing delay.
The present invention is described in detail herein with reference to the attached drawing figures, which are incorporated herein by reference, wherein:
Subject matter is described throughout this disclosure in detail and with specificity in order to meet statutory requirements. But the aspects described throughout this disclosure are intended to be illustrative rather than restrictive, and the description itself is not intended necessarily to limit the scope of the claims. Rather, the claimed subject matter might be practiced in other ways to include different elements or combinations of elements that are similar to the ones described in this disclosure and that are in conjunction with other present, or future, technologies. Upon reading the present disclosure, alternative aspects may become apparent to ordinary skilled artisans that practice in areas relevant to the described aspects, without departing from the scope of this disclosure. It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.
At a high level, aspects of this disclosure provide technologies for underwater communication systems and, in some embodiments in particular, systems and methods that utilize a soft-decision adaptive turbo equalization scheme. The data reuse technique may be adopted such that the adaptive equalizer itself performs iterative channel equalization and symbol detection, enabling the usage of a posteriori soft decisions for the equalizer adaptation and the soft interference cancellation. Hence, two layers of iterative processing may occur, a first layer of symbol detection where information about a received signal is iteratively exchanged between an adaptive equalizer and a soft decoder, and a second layer inside the adaptive equalizer itself. Attributed to the better fidelity of the a posteriori soft decisions as compared with the a priori soft decisions employed in other adaptive turbo equalization, the soft-decision adaptive turbo equalization not only provides robust detection performance but is very efficient in terms of spectral utilization and processing delay.
MIMO UWA communication exhibits unique technical challenges due to the triply selective property of the underlying MIMO UWA channel, for which the signal simultaneously experiences frequency selectivity, time selectivity, and spatial selectivity. The frequency selectivity and the time selectivity are generally very severe due to the extremely long delay spread and the rapid dynamics of the UWA channel. For example, a medium-range horizontal UWA channel can have a delay spread of several tens of milliseconds spanning several tens or even hundreds of symbol periods, and the channel coherence time is typically several tens of milliseconds. Further, the spatial selectivity leads to different gains among different transmit and receive elements, adding to the difficulty of signal detection.
The harsh MIMO UWA channel demands powerful signal detection techniques. Turbo equalization is one such detection scheme. Turbo equalization typically consists of two components: a soft-input soft-output equalizer and a soft-input soft-output decoder, which iteratively exchange extrinsic information to improve the detection performance. The turbo equalization applied to UWA communications falls into two classes: channel estimation based turbo equalization (“CE-TEQ”); and adaptive turbo equalization (“ATEQ”) with no need of explicit channel knowledge. The equalizer for a CE-TEQ can be a minimum mean square error (“MMSE”) linear equalizer or a MMSE decision-feedback equalizer (“DFE”), where the calculation of the MMSE equalizer coefficients requires the knowledge of the UWA channel. Since the length of the UWA channel is usually long, the computation of the equalizer coefficients involves a large-dimension matrix inversion, leading to high complexity. The complexity can be further amplified when a MIMO system with multiple transducers and hydrophones is deployed due to the increased size of the covariance matrix to be inverted. The high complexity means a long signal processing delay, making the CE-TEQ impractical for real-time applications. On the other hand, an ATEQ takes advantage of the low complexity achieved by directly adjusting the equalizer coefficients without any matrix inversion operation. An ATEQ generally achieves suboptimal performance by approaching that of the Wiener filtering and demands for fine parameter tuning (which is nontrivial for MIMO UWA communication due to the abundant equalizer coefficients to be adapted) so as to make the adaptive equalizer converge.
A soft-input soft-output equalizer used in ATEQ may include two filters: a feedforward filter with the received samples as its input; and a soft interference cancellation (“SIC”) filter with the estimation of transmit symbols as its input. The adaptation of the feedforward filter and the SIC filter, as well as the quality of the SIC filter input are important for the success of the adaptive turbo equalization. In training mode, the filter adaptation and the SIC formulation are routine procedures since the reference symbols are a priori perfectly known. It is during the decision directed (“DD”) phase, diverse filter adaptation and SIC formulation methods are proposed, leading to different ATEQ schemes of different performance. In some aspects, the hard decision on the equalizer output is used to drive the filter adaptation and the SIC input is the a priori soft symbol estimation from the channel decoder. Data reuse, meaning filter adaptation and symbol detection repeated several times over the same set of data, may help improve the detection performance as well as speed up the filter convergence. In other words, data reuse shortens the training sequence and improves transmission efficiency. In other aspects, hard decisions of the a priori soft symbol estimations from the decoder are delivered as the SIC filter input. For these aspects, the decoder a priori soft decisions (“SD”) are also incorporated into the filter adaptation in order to mitigate the error propagation effect of the hard decisions. This scheme, however, may still require a very long training sequence for the initialization of the equalizer
Much of the existing work on ATEQs for UWA communication concerns single-input multiple-output (“SIMO”) transmission and MIMO transmission in a two-transducer scenario using a low-order QPSK modulation. An efficient ATEQ, however, is for MIMO UWA communications with multiple transmit elements and multilevel modulations (e.g., 8PSK and 16QAM). The scheme may adopt the low-complexity normalized least mean squares (“NLMS”) algorithm and/or the improved proportionate normalized least mean squares (“IPNLMS”) algorithm while still employing the data reuse technique. Compared with existing ATEQ schemes, the scheme is improved in both filter adaptation and SIC formulation. These improvements may be achieved by using a posteriori soft decisions at the equalizer output, which are available in the data reuse iteration. The a posteriori soft decisions have better fidelity than the a priori soft decisions due to the extra information gleaned in the equalization process. Moreover, the a posteriori soft decisions are utilized in a block-wise way, which leads to low complexity and high performance. The proposed scheme not only achieves error-free detection for most QPSK packets in MIMO transmission with up to three transmit elements, but also works well in MIMO transmission with multilevel modulations like 8PSK and 16QAM, as shown by the experimental results discussed infra. Furthermore, relatively short training sequences were found to be sufficient, resulting in improvements in the transmission efficiency.
The ATEQ scheme has been tested by using extensive experimental data collected in the 2008 Surface Processes and Acoustic Communications Experiment (“SPACE08”). The low-complexity NLMS algorithm and the sparsity enhanced IPNLMS algorithm were both tested. Off-line processing results show the proposed ATEQ detects almost all QPSK packets without error in the MIMO transmission with two or three transmit elements, at a low training overhead. For MIMO transmission with multilevel 8PSK and 16QAM modulations and up to three concurrent transmit streams, the proposed ATEQ scheme achieves good detection with a reasonable training overhead. It was also observed that the performance gain of the IPNLMS algorithm over the NLMS algorithm depends on the modulation and the MIMO size. For example, when low-order MIMO transmission with QPSK or 8PSK modulations are used the low-complexity NLMS algorithm is sufficient for the proposed ATEQ to achieve high performance. However, when 16QAM modulation or higher-order MIMO transmission is employed, the IPNLMS outperforms the NLMS by making use of the sparse property of the equalizer.
Throughout this disclosure the superscripts (·)*, (·)T and (·)H represent, respectively, the conjugate, the matrix transpose, and the matrix Hermitian, and {·} denotes the statistical expectation. Also throughout this disclosure, the function tan h(x)denotes the hyperbolic tangent and the matrix diag {d1,d2, . . . , dj} is a j×j diagonal matrix with diagonal elements d1,d2, . . . , dj.
An N×M single-carrier MIMO UWA communication system with spatial multiplexing may include a transmitter side having N transducers and a receiver side having M hydrophones. Referring to
The received baseband signal on the m-th hydrophone element at the time k is given by
where hl(m,n) denotes the l-th tap of the length-L equivalent channel between the n-th transducer element and the m-th hydrophone element, and ηk(m) is the additive noise. Stacking up the receive samples of the M hydrophone as yk=[yk(1),yk(2), . . . , yk(M)]T, one has the space-time representation as
Turning now to
An equalizer output {circumflex over (x)}n,k (i.e., an equalized symbol), comprising a combination of an output from the feedforward filter 208 and an output from the SIC filter 210, is input into a soft demapper 214. The equalizer output is given as
{circumflex over (x)}
n,k
=f
n,k
H
r
k
+g
n,k
H
{tilde over (x)}
n,k (8)
where rk=[yk+K
{circumflex over (x)}n,k=wn,kHuk (9)
wherein
wn,k=[fn,kT gn,kT]T (10)
uk=[rkT {tilde over (x)}n,kT]T (11)
The equalized symbol {circumflex over (x)}n,k is translated into extrinsic bit LLRs Le(cn,kj) by the soft demapper 214. The extrinsic bit LLRs Le(cn,kj) are de-interleaved by a de-interleaver 216 and input as a priori LLRs Lad(cn,k′j′) of the MAP decoder 212. After decoding, the MAP decoder 212 outputs its extrinsic LLRs Led (cn,k′j′), which are interleaved by interleaver 218. After interleaving, the extrinsic LLRs Led(cn,k′j′) are fed back to the adaptive equalizer 206 as a priori LLR input La(cn,kj). In other words, a soft mapper 220 uses the a priori LLR input La(cn,kj) to calculate an a priori soft decision
Adaptive turbo equalization usually comprises both a training mode and a DD mode. In some aspects, adaptive turbo equalization may use the NLMS algorithm. For example, in the training mode the equalizer vector using the NLMS algorithm updates the coefficients as follows
where μ is the step size, δNLMS is a small number for regularizing the adaptation (avoiding division by zero), xn,k is the training symbol known a priori, and Kp is the length of the training sequence.
In the DD mode, updating of the equalizer vector using the NLMS algorithm is as follows
where Q({circumflex over (x)}n,k) denotes the tentative hard decision on the equalizer output, and Kb is the length of each processed block.
As mentioned above, the length of the concatenated feedforward filter 208 and the SIC filter 210 is Keq=M(K1+K2+1)+N(K3+K4). Due to the long delay spread of the underwater channel and the multiple transmit and receive elements, the number of equalizer coefficients to be adapted is large. Thus, to make the adaptive equalizer converge a long training sequence is required. A long training sequence, however, sacrifices transmission efficiency. To avoid the long training sequence, a data reuse technique may be applied in a hard-decision directed adaptive turbo equalization (HD-ATEQ) scheme and/or an iterative channel estimation based turbo equalization.
An exemplary aspect of a hard-decision directed equalizer adaptation with data reuse is demonstrated in
where the superscript t+1 denotes the (t+1)-th round of data reuse, and {circumflex over (x)}n,kt+1=wn,kt+1
As depicted in
The HD-ATEQ may suffer from error propagation (“EP”) when used for UWA communications. For example, at low SNR or severe multipath/Doppler channel, a one-bit error that the HD-ATEQ made in a block may propagate in the subsequent Turbo iterations, causing catastrophic EP.
Another adaptive turbo equalization scheme may include performing the equalizer adaptation and the SIC filtering with soft decisions, as depicted in
The turbo iterations of the SD-ATEQ operate as described above in reference to
The equalizer iterations of the SD-ATEQ adjust the feedforward filter (e.g., 402) and the SIC filter (e.g., 404) based upon an apparent error en,ky+1. The apparent error en,kt+1 of the SD-ATEQ is determined by subtracting the equalizer output {circumflex over (x)}n,kt+1 (of the present equalization iteration) from an a posteriori soft decision {hacek over (x)}n,kt (made with the equalizer output the previous equalizer iteration). As shown in
At the t-th (t≥0) round of equalizer iteration, the a posteriori soft decision čn,kt of the equalized symbol {circumflex over (x)}n,kt is calculated as
where the a posteriori probability P(xn,k=αi|{circumflex over (x)}n,kt) is given as
The a priori probability P(xn,k=αi) is computed with the a priori LLRs (e.g., as determined in equation (7)), and p({circumflex over (x)}n,kt) is obtained via the normalization Σi=12qP(xn,k=αi|{circumflex over (x)}n,kt)=1. The equalizer output {circumflex over (x)}n,kt conditioned on xn,k=αi is assumed to follow a Gaussian distribution, as
with Kd=Kb−Kp being the length of information block. The evaluation of μnt and δnt relies on the entire block of estimated symbols. As a result, the a posteriori soft decisions are unavailable until all symbols in the block are equalized. This leads to the block-wise soft-decision feedback operation, where the a posteriori soft decision {hacek over (x)}n,kt of the t-th equalizer iteration is used in the (t+1)-th equalizer iteration, as shown in
At the (t+1)-th equalizer iteration, the block of a posteriori soft decisions from the t-th equalizer iteration {{hacek over (x)}n,kt}k=K
The equalizer adaption at the zero-th equalizer iteration is different from that determined with equation (20), because there are no a posteriori soft decisions available. When the number of turbo iteration Niter>0, the a priori soft decisions {
The training-mode equalizer adaptation as given by equation (12) is performed at each equalizer iteration of the data reuse procedure. Hence, the soft decisions are fed back in a block-wise way inside the adaptive equalizer, which improves the robustness and performance of the adaptive turbo equalization as well as reduces the complexity because of calculations performed with equations (20) and (21).
The sparsity enhanced IPNLMS algorithm has also been adopted to process the experimental data. The IPNLMS proportionately adapts the equalizer vector as
where δIPNLMS is a small positive number for regularization, and Gn,k=diag {gn,k(0), gn,k(1), . . . , gn,k(Keq−1)} is a diagonal proportionate matrix with the l′-th diagonal element given by
where ∈ is also a regularization parameter introduced to avoid numerical instability, wn,kt+1(l′) is the l′-th element of wn,kt+1, and |·| and ∥·∥1 are the absolute operator and the l1-norm operator, respectively. The selection of α depends on the sparsity of the equalizer. When α=−1, the IPNLMS reduces to the NLMS and the equalizer sparsity is not exploited. When α=1, the IPNLMS behaves like the proportionate normalized least mean squares (PNLMS). The IPNLMS is still of linear complexity without involving any matrix inversion operation.
The performance of the SIC filter (e.g. 404) depends on the quality of the soft decision. Most adaptive turbo equalization schemes employ the a priori soft decisions for SIC. By utilizing the a posteriori soft decisions, which possess higher fidelity than the a priori soft decisions due to the extra information gleaned in the equalization process, one is able to improve the SIC. Specifically, with the improved SIC, the equalizer output {circumflex over (x)}n,kt+1 is given by
{circumflex over (x)}
n,k
t+1
=f
n,k
t+1
r
k
+g
n,k
t+1
{hacek over (x)}
n,k
t (25)
The a priori soft decisions {tilde over (x)}n,k in equation (8) have been replaced with the a posteriori soft decisions {hacek over (x)}n,kt=[({hacek over (x)}n,k−K
The above described adaptive turbo detection scheme has been tested by field trial data collected in the SPACE08 undersea experiment, conducted off the coast of Martha's Vineyard, Edgartown, Mass., in October 2008. The water depth of this sea trial was about 15 m. On the transmitter side, four transducers numbered 0 through 3 were deployed. Transducer 0 was fixed on a stationary tripod about 4 m above the ocean bottom. Transducers 1-3 were evenly mounted on a vertical array with 50 centimeters spacing, and the top transducer in the array was about 3 m above the ocean bottom. Six hydrophone arrays placed at different locations were deployed for signal reception, with detailed information given in
For MIMO transmission, the horizontal encoding (HE) scheme with BICM in time domain was adopted at the transmitter, as shown in
The signal format at the n-th transducer is illustrated in
The received bursts of the 200-m channel and the 1000-m channel are shown in
Turning to
Due to the fast time variations of the UWA channels, the adaptive turbo detector partitions each long data payload into multiple blocks of size Kb for processing, as shown in
The step size μ of the adaptive algorithms was set to be exponentially decaying with each data reuse iteration, and the decaying factor was set as β=0.9. The initial step size was chosen as μ=1 during the training period, and decreased to μ=0.1 at the DD mode. The choices of K1=100, K2=50 and K3=K4=50 are used for the feedforward filter and the SIC filter, respectively, in this particular experiment. The maximum number of equalizer iterations (or data reuse) was set as 4. Other relevant parameters in the adaptive algorithm were set as δNLMS=0.01, δIPNLMS=5×10−5, ∈=0.01, and α=0.
The results for the 200-m and 1000-m transmissions are presented. For the 200-m transmission, 30 S3 files and 15 S4 files described in Table I were recorded in two days during the experiment. Each file contains one burst as shown above, and all 45 files were processed. For the 1000-m transmission, 34 data files were recorded during the trial but only 19 of them are valid. The 19 valid files, including eight S5 files and eleven S6 files, were all processed.
The processing of the two-transducer MIMO data will now be discussed. Table III provides a summary of the results, and the figure of merit is the number of packets achieving a specific BER level. From
Performance analysis is provided for the proposed adaptive equalization via the mean square error (“MSE”) curve. For a given turbo iteration, the MSE of the n-th transmit stream at the (t+1)-th equalizer iteration is estimated via a leaky integrator as
MSEn,k+1t+1=λMSEn,kt+1+(1−λ)|en,kt+1|2 (26)
where k=1, . . . , Kb,en,kt+1={hacek over (x)}n,kt−{circumflex over (x)}n,kt+1 and λ is set as 0.99. It is noted that MSEn,1t+1=MSEn,K
The processing results for 3×12 and 4×12 MIMO transmission will now be discussed. Compared with the two-transducer transmission, detection gets more difficult with more concurrent transmission streams, due to the increased co-channel interference. In
The results of the 4×12 MIMO transmission are shown in
It is found that the HD-ATEQ experienced convergence issues in the processing of 8PSK and 16QAM packets, due to the catastrophic effect of error propagation. Even with QPSK modulation, the NLMS-based HD-ATEQ did not converge. Therefore, the comparison between the proposed SD-ATEQ and the HD-ATEQ is limited to the two-transducer MIMO transmission with QPSK modulation and the IPNLMS algorithm. The comparison is shown in
In
Finally, the comparison in terms of MSE is presented in
We also compared the performance of the proposed SD-ATEQ with the HD-ATEQ based on simulations. In one simulation, a 2×4 MIMO system with QPSK modulation was used, where each sub-channel is a frequency selective Raleigh fading channel. The fading channels are generated with the power delay profile described in
The BER and extrinsic information transfer chart (“EXIT”) simulation results are shown in
The evolutional behavior of the SD-ATEQ will now be discussed. In
In
In
The technology herein described may comprise, among other things, a MIMO UWA modem, a single carrier system with bit-interleaved coded modulation for point-to-point MIMO UWA transmissions, and a method or a set of instructions stored on one or more computer-readable media. Information stored on the computer-readable media may be used to direct operations of a computing device, and an exemplary computing device 600 is depicted in
The computing device 600 has a bus 610 that directly or indirectly couples the following components: memory 612 (which may include memory chips or other local memory structures), one or more processors 614 (which may include a programmable logic controller), one or more presentation components 616, input/output (I/O) ports 618, I/O components 620, and an illustrative power supply 622. The bus 610 represents what may be one or more busses (such as an address bus, data bus, or combination thereof). Although the various blocks of
The computing device 600 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by the computing system 600 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media; computer storage media excluding signals per se. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data.
Computer storage media includes, by way of example, and not limitation, Random Access Memory (RAM); Read Only Memory (ROM); Electronically Erasable Programmable Read Only Memory (EEPROM); flash memory or other memory technologies; CD-ROM, digital versatile disks (DVD) or other optical or holographic media; magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices. Computer storage media does not comprise a propagated data signal.
Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above should also be included within the scope of communications media.
The computing device 600 is depicted to have one or more processors 614 that read data from various entities such as memory 612 or I/O components 620. Exemplary data that is read by a processor may be comprised of computer code or machine-useable instructions, which may be computer-executable instructions such as program modules, being executed by a computer or other machine. Generally, program modules such as routines, programs, objects, components, data structures, etc., refer to code that perform particular tasks or implement particular abstract data types.
The presentation components 616 present data indications to a user or other device. Exemplary presentation components are a display device, speaker, printing component, light-emitting component, etc. The I/O ports 618 allow the computing device 600 to be logically coupled to other devices including the I/O components 620, some of which may be built in.
In the context of MIMO UWA communications, a computing device 600 may be used to process the received signals and compute the algorithms associated with the turbo receivers. For example, a computing device may be used to perform the iterative method of equalizer adaptation and decoding of MIMO UWA communications described herein.
Some aspects of this disclosure have been described with respect to the illustrative examples provided by
One aspect disclosed herein is directed to a method for underwater communication using a multiple-input multiple-output (“MIMO”) acoustic channel. The method may comprise receiving at an acoustic receiver a signal. The signal may comprise bits of information encoded in one or more transmitted symbols. The acoustic receiver may include an adaptive turbo equalizer and a MAP decoder. Such method also may comprise for each of the one or more transmitted symbols, after a two-layer iterative process is completed outputting from the MAP decoder a hard decision of the bits of information encoded in each of the one or more transmitted symbols. The two-layer iterative process may include both an iterative exchange of information between the adaptive turbo equalizer and the MAP decoder (a “Turbo Iteration”) and an iterative adaptation of both a feedforward filter and a serial interference cancellation filter of the adaptive turbo equalizer based upon a posteriori soft decisions of a respective block of the one or more transmitted symbols (a “Equalizer Iteration”). Each Turbo Iteration may comprise equalizing the received signal with the adaptive turbo equalizer to estimate each symbol within the respective block of the one or more transmitted symbols, sending each estimated symbol to the MAP decoder, generating, with the MAP decoder, a soft decision of the transmitted bits of information encoded in each said estimated symbol using a bit a priori log likelihood ratio, and sending the bit a priori log likelihood ratio to the adaptive turbo equalizer for use with a subsequent Turbo Iteration. Each Equalizer Iteration may comprise, based upon a first estimated symbol determined by the adaptive turbo equalizer during a first Turbo Iteration, determining an a posteriori soft decision of the symbol, based upon a second estimated symbol determined by the equalizer during a second Turbo Iteration and based upon the a posteriori soft decision, determining an apparent error in the equalizer filters, and adjusting the equalizer filters based upon the apparent error.
The signal received by the acoustic receiver may comprise the sum of multiple data streams transmitted by multiple transducers. The acoustic receiver may include a plurality of streams for equalizing and decoding a MIMO transmission, wherein each stream of the plurality of streams includes a respective adaptive turbo equalizer and a respective MAP decoder. Each stream of the plurality of streams may include a respective soft demapper for determining the bit a priori log likelihood ratio from each estimated symbol.
One of a QPSK, a 8PSK, a 16QAM or a higher order QAM may be used in the modulated MIMO transmission. The training overhead for different modulation schemes may be dependent on channel characteristics, performance requirements, and received signal-to-noise ratio. The signal received by the acoustic receiver may comprise both training blocks and information blocks. The training blocks may include training symbols used to initialize the acoustic receiver. The information blocks may include the bits of information encoded in the one or more transmitted symbols.
In some aspects, each Equalizer Iteration may use a normalized least mean square algorithm. The equalizer vector of both the feedforward filter and the serial interference cancellation filter may be updated using equation (21), set forth above. In other aspects, each Equalizer Iteration may use an improved proportionate normalized least mean square algorithm. The equalizer vector of both the feedforward filter and the serial interference cancellation filter may be updated using equation (23), set forth above.
The two-layer iterative process is completed when the feedforward filter and the serial interference cancellation filter converge, in accordance with some aspects. In other aspects, the two-layer iterative process is completed after at least five Turbo Iterations have been completed.
Another aspect disclosed herein is directed to an improved MIMO UWA modem. The improved MIMO UWA modem may comprise an acoustic receiver having a plurality of acoustic sensors configured to receive MIMO UWA transmissions, a memory, and a signal processing unit in communication with the acoustic receiver. The signal processing unit may be configured to decode the MIMO UWA transmissions and output a hard decision of what bit of information is encoded on one or more symbols included in the MIMO UWA transmissions. The signal processing unit may include a plurality of streams for decoding the MIMO UWA transmissions. Each stream of the plurality of streams may include a MAP decoder and an adaptive turbo equalizer having a feedforward filter and a serial interference cancellation filter. The signal processing unit may decode the MIMO UWA transmissions by iteratively exchanging soft decisions of the one or more symbols between the adaptive turbo equalizer and the MAP decoder and by iteratively adapting the feedforward filter and the serial interference cancellation filter based upon a posteriori soft decisions of the one or more symbols.
The adaptive turbo equalizer of each stream may further comprise an a posteriori statistical calculation unit for determining the a posteriori soft decisions of the one or more symbols. The a posteriori statistical calculation unit may include a time averaging statistical estimator that determines a mean of the soft symbols and a variance of the soft symbols for use in determining the a posteriori soft decisions of the one or more symbols. The time averaging statistical estimator may determine the mean of the soft symbols using equation (18), set forth above. The time averaging statistical estimator may determine the variance of the soft symbols using equation (19), set forth above. The a posteriori statistical calculation unit may determine the a posteriori soft decisions of each symbol of the one or more symbols using equation (15), set forth above. Each stream of the plurality of streams may include a respective soft demapper for determining a bit a priori log likelihood ratio from each estimated symbol. The MIMO UWA transmissions received by the acoustic receiver may comprise one of a QPSK modulated MIMO transmission, an 8PSK modulated MIMO transmission, a 16QAM modulated MIMO transmission, or a higher order QAM modulated MIMO transmission.
The foregoing description has described the systems and methods of the present invention in terms of MIMO UWA communications for the purposes of concision. It would be understood by artisans skilled in the relevant art, however, that the above described systems and methods may also be used for single-input multiple-output (“SIMO”) UWA communications and single-input single-output (“SISO”) UWA communications.
From the foregoing, it will be seen that aspects described herein are well adapted to attain all of the ends and objects hereinabove set forth, together with other advantages which are obvious and which are inherent to the structure. It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims. Since many possible aspects described herein may be made without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
This invention was made with U.S. Government support by way of Grant Numbers ECCS-0846486 and ECCS-1408316 awarded by the National Science Foundation and Grand Numbers N00014-10-1-0174 and N00014-07-1-0219 awarded by the Office of Naval Research. The Government has certain rights in the invention. See 35 U.S.C. § 202(c)(6).