This invention relates to a turbocharger for an internal combustion engine.
More particularly, the invention relates to a turbocharger for an internal combustion engine comprising: a turbine driven by exhaust gas from the engine; a compressor for supplying compressed air to the engine, the compressor including an impeller driven by the turbine; a series of variable position guide vanes upstream of the impeller for directing air such that it is swirling in a rotational sense on reaching the impeller; and control means for varying the position of the guide vanes.
In order to meet emission regulations applicable to medium speed four-stroke diesel engines it is known to use so called Miller timing. In Miller timing the engine inlet valve is closed before bottom dead centre and the charge air is cooled by an expansion process at the end of the induction stroke. This reduces cylinder firing temperature and formation of NOX (nitrogen oxides).
As regards the turbocharger for such engines, this requires a higher pressure ratio, typically above 5, and for engine overload conditions a pressure ratio above 5.2 is desirable.
In order to increase the pressure ratio the rotational speed of the compressor of the turbocharger must be increased. This increases centrifugal loading and hence material stress on the impeller of the compressor, which stress increases with the square of rotational speed.
The temperature of the air washed surfaces of the impeller also increases with rotational speed. This is so by conservation of rothalpy. In approximation the temperature T of the impeller at radius r is given by T=Tamb+(Ω2r2/2 Cp), where Tamb is the stagnation temperature at the impeller inlet (typically the ambient temperature), Ω is the speed of the impeller in radians per second, and Cp is the air specific heat capacity at constant pressure.
It is to be noted that particularly at high pressure ratios, when the flow into the impeller is tending to choke, a small increase in pressure ratio as the engine load rises can only be obtained by a large increase in impeller speed.
Traditionally turbocharger impellers are made from an aluminium alloy and are typically required to achieve a 50,000 hour life. The life is limited by low cycle fatigue (peak stresses and the cyclic duty) and by creep (peak stresses and temperature). This translates into a maximum pressure ratio capability of between 4.5 and 5 for a 45° C. ambient temperature depending on the particular design. In this regard the high ambient temperature is considered typical of many marine engine rooms.
It is desired to achieve higher pressure ratios whilst at the same time not sacrificing impeller life.
It is known to do this by changing the material of the impeller. Steel could be used, but this has a very high density and the inertia of the impeller and consequent turbo-lag effectively rules out this option in most cases. Titanium is usually used for higher pressure ratio/temperature applications. This also has a higher density than aluminium, but considerably less than steel and as a consequence is often acceptable. The cost of replacing an aluminium impeller with a titanium impeller is in many cases prohibitive.
It is also known to achieve a higher pressure ratio whilst not sacrificing impeller life by using multistage compression. The compression is split between two aluminium impellers. This may be on the same shaft or by using two turbochargers. This may well be an acceptable approach for higher pressure turbocharging (ratios of 7 and above) where intercooling between the compression stages can be an advantage, but the complexity and cost of this approach is disproportionately high when relatively modest increases in pressure ratio are required.
According to the present invention there is provided a turbocharger for an internal combustion engine comprising: a turbine driven by exhaust gas from the engine; a compressor for supplying compressed air to the engine, the compressor including an impeller driven by the turbine; an arrangement upstream of the impeller suitable for directing air such that it is swirling in a rotational sense on reaching the impeller; and control means arranged to control said arrangement such that as the speed of the impeller approaches a predetermined maximum speed limit the arrangement directs air such that it is swirling in the opposite rotational sense to that in which the impeller is being driven by the turbine.
Preferably, the control means is arranged (i) to apply the swirl in the opposite rotational sense when the speed of the impeller reaches a threshold speed, (ii) to progressively increase the amount of the swirl as the speed of the impeller increases from the threshold speed to the predetermined maximum speed limit, and (iii) at the maximum speed limit to vary the amount of swirl applied so that the speed of the impeller does not exceed the maximum speed limit.
The threshold speed may substantially correspond to the speed of the impeller when the internal combustion engine is operating at 85% full engine load.
The threshold speed may substantially correspond to the speed of the impeller when the internal combustion engine is operating at full load.
Preferably, said arrangement upstream of the impeller suitable for directing air comprises a series of variable position guide vanes, the control means being arranged to vary the position of the guide vanes such that as the speed of the impeller approaches the predetermined maximum speed limit the guide vanes direct air such that it is swirling in the opposite rotational sense to that in which the impeller is being driven by the turbine.
In the turbocharger described below by way of example, the turbine and the impeller rotate about a first axis, and the series of variable position guide vanes are arranged in a circle centred on the first axis, the plane of the circle being perpendicular to the first axis, rotation of the impeller causing air to be drawn radially inwardly with respect to the first axis through the circle of guide vanes and subsequently to travel along the first axis, the air swirling about the first axis as it travels therealong.
Further, in the turbocharger described below, each guide vane includes a shaft extending parallel to the first axis, rotation of each shaft about its own axis varying the angle of inclination its associated guide vane, rotation of the shafts of the guide vanes effecting variation of the amount of swirl applied by the guide vanes.
Further, the turbocharger described below additionally comprises: a linkage mechanism for linking the shafts of the guide vanes, operation of the linkage mechanism causing all shafts to be rotated by the same angle and in the same sense; and an actuator for operating the linkage mechanism, the actuator being under the control of the control means.
The invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Referring to
In turbine section 1, exhaust gas enters via openings 7, 8 which merge so as to provide an annular gas supply to stationary guide vanes 9. The gas drives rotor 11 by means of rotor vanes 13, and thereafter is collected and channeled by the turbine section casing to leave the section via opening 15.
In compressor section 3, an impeller 17 driven by rotor 11 draws air from guide vane section 5, compresses this air, and passes it to diffuser 19. The air travels from diffuser 19 to scroll like volute 20, and then leaves volute 20 and compressor section 3 via an opening surrounded by flange 21. The air travels in a direction into the paper when leaving via this opening.
Referring also to
Referring also to
Rotation of impeller 17 causes air to be drawn in the direction of arrows 33 radially inwardly between casing sides 25, 27 and through guide vanes 23. Guide vanes 23 direct the air so as to cause the air to swirl in either a clockwise or anticlockwise sense or not at all depending on the setting of the guide vanes, as the air is drawn towards the impeller. Arrows 35 indicate the swirl caused by guide vanes 23, and arrows 37 indicate the drawing of the air towards the impeller. A conical protrusion 39 in casing side 25 assists in the aerodynamics of guide vane section 5.
The turbocharger further comprises an actuator 41 for operating linkage mechanism 49, a control unit 43 for controlling the operation of actuator 41, and a speed sensor 45 for sensing the speed of impeller 17.
Associated with impeller 17 is a maximum speed limit which the impeller must not exceed if it is to have a required lifetime, as explained in the introduction to the present application. It is desired that as the speed of impeller 17 approaches this maximum speed limit guide vanes 23 direct air such that it is swirling in the opposite rotational sense to that in which impeller 17 is being driven by turbine section 1, i.e. guide vanes 23 apply negative pre-swirl. As will be explained below, this enables higher compressor pressure ratios to be achieved without exceeding the maximum speed limit.
In
A threshold impeller speed is assigned at which guide vanes 23 will be operated so that they apply negative pre-swirl. The aim is that the engine will be operating at approximately full load when the threshold speed is sensed. Consequently, in known manner, see below, guide vanes 23 will extend either precisely radially or apply only a small amount of positive pre-swirl when threshold speed is sensed. It is to be noted that for many marine applications engines are required to operate safely up to 110% rated engine load for one hour in twelve. It is in these overload conditions, when availability of power is necessary, but efficiency is not paramount, that negative pre-swirl is important in protecting the life of the impeller.
In response to speed sensor 45 sensing the threshold impeller speed, control unit 43 controls actuator 41 to operate linkage mechanism 49 so that guide vanes 23 apply negative pre-swirl. As the speed of impeller 17 progressively increases from the threshold speed towards the maximum speed limit, control unit 43 controls the angle of inclination of guide vanes 23 so as to progressively increase the amount of negative pre-swirl applied. In
It is known to use positive pre-swirl at low engine load to increase both compressor efficiency and stall margin. Negative pre-swirl at low load, although having the undesirable effect of reducing both efficiency and stall margin, is able to lower compressor speed for a given pressure ratio. It is this property that is utilised by the present invention at high load.
The flow leaving the impeller swirls in the direction of impeller rotation. If the flow entering the impeller also swirls in this direction, i.e. there is positive pre-swirl, then, as compared to the case where there is negative pre-swirl, not as much work is done on the flow by the impeller. In general, this means that where there is negative pre-swirl, the compressor pressure ratio is higher. However, the main change to the compressor characteristic is not pressure ratio at a given speed, but mass flow, see the graph of
Referring to
In
Referring to
It is to be understood that the adjustment of guide vanes 23 should be smooth and gradual, and proportional to the turbocharger speed, such that there is no sudden change in turbocharger speed. In the case where there is a sudden reduction in engine load, the engine may over-speed whilst the fuel supply adjusts to the new requirements. This would increase the mass flow through the compressor and possibly the pressure ratio potentially increasing turbocharger speed. This would have the result of more negative pre-swirl being applied to reduce turbocharger speed. As the fuel supply to the engine then reduces, the temperature of the gas entering the turbine reduces, and consequently the power passed to the compressor reduces, reducing compressor speed. This will cause a corresponding reduction in the amount of negative pre-swirl applied. Of course, in the case where an emergency shedding of engine load takes place, a so called wastegate may be used which diverts exhaust gas so that it does not reach the turbocharger turbine.
In the above description the threshold speed at which negative pre-swirl is first introduced corresponds to approximately full engine load. It is to be appreciated that negative pre-swirl could be used to reduce compressor speed at speeds lower than that corresponding to full load. Of course, negative pre-swirl cannot be used at speeds lower than that corresponding to the point at which surge line 63 crosses the engine running line in the graph of
In the above description a series of variable position guide vanes are used to apply the negative pre-swirl. It is to be appreciated that the negative pre-swirl could be applied in other ways. All that is required is an arrangement suitable for directing air such that the air on reaching the impeller is swirling in the opposite rotational sense to that in which the impeller is being driven by the turbine. For example, such an arrangement might direct a proportion of the air intake to the compressor through a pipe or pipes mounted off-centre of the turbocharger axis, with the amount of air entering through the pipe or pipes being controlled by a valve thereby to adjust the amount of negative pre-swirl applied.
Number | Date | Country | Kind |
---|---|---|---|
0508219.3 | Apr 2005 | GB | national |
This application is the US National Stage of International Application No. PCT/EP2006/061687, filed Apr. 20, 2006 and claims the benefit thereof. The International Application claims the benefits of British application No. 0508219.3 filed Apr. 23, 2005, both of the applications are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/061687 | 4/20/2006 | WO | 00 | 10/23/2007 |