The present disclosure relates to centrifugal compressors, such as used in turbochargers, and more particularly relates to centrifugal compressors in which the effective inlet area or diameter can be adjusted for different operating conditions by means of an inlet-adjustment mechanism disposed in the air inlet for the compressor.
An exhaust gas-driven turbocharger is a device used in conjunction with an internal combustion engine for increasing the power output of the engine by compressing the air that is delivered to the air intake of the engine to be mixed with fuel and burned in the engine. A turbocharger comprises a compressor wheel mounted on one end of a shaft in a compressor housing and a turbine wheel mounted on the other end of the shaft in a turbine housing. Typically the turbine housing is formed separately from the compressor housing, and there is yet another center housing connected between the turbine and compressor housings for containing bearings for the shaft. The turbine housing defines a generally annular chamber that surrounds the turbine wheel and that receives exhaust gas from an engine. The turbine assembly includes a nozzle that leads from the chamber into the turbine wheel. The exhaust gas flows from the chamber through the nozzle to the turbine wheel and the turbine wheel is driven by the exhaust gas. The turbine thus extracts power from the exhaust gas and drives the compressor. The compressor receives ambient air through an inlet of the compressor housing and the air is compressed by the compressor wheel and is then discharged from the housing to the engine air intake.
Turbochargers typically employ a compressor wheel of the centrifugal (also known as “radial”) type because centrifugal compressors can achieve relatively high pressure ratios in a compact arrangement. Intake air for the compressor is received in a generally axial direction at an inducer portion of the centrifugal compressor wheel and is discharged in a generally radial direction at an exducer portion of the wheel. The compressed air from the wheel passes through a diffuser before being delivered to a volute, and from the volute the air is supplied to the intake of an internal combustion engine.
The operating range of the compressor is an important aspect of the overall performance of the turbocharger. The operating range is generally delimited by a surge line and a choke line on an operating map for the compressor. The compressor map is typically presented as pressure ratio (discharge pressure Pout divided by inlet pressure Pin) on the vertical axis, versus corrected mass flow rate on the horizontal axis. The choke line on the compressor map is located at high flow rates and represents the locus of maximum mass-flow-rate points over a range of pressure ratios; that is, for a given point on the choke line, it is not possible to increase the flow rate while maintaining the same pressure ratio because a choked-flow condition occurs in the compressor.
The surge line is located at low flow rates and represents the locus of minimum mass-flow-rate points without surge, over a range of pressure ratios; that is, for a given point on the surge line, reducing the flow rate without changing the pressure ratio, or increasing the pressure ratio without changing the flow rate, would lead to surge occurring. Surge is a flow instability that typically occurs when the compressor blade incidence angles become so large that substantial flow separation arises on the compressor blades. Pressure fluctuation and flow reversal can happen during surge.
In a turbocharger for an internal combustion engine, compressor surge may occur when the engine is operating at high load or torque and low engine speed, or when the engine is operating at a low speed and there is a high level of exhaust gas recirculation (EGR). Surge can also arise when an engine is suddenly decelerated from a high-speed condition. Expanding the surge-free operation range of a compressor to lower flow rates is a goal often sought in compressor design.
Applicant is the owner of several patent applications (hereinafter, “the commonly owned Applications”) describing various inlet-adjustment mechanisms for delaying the onset of surge to lower flow rates at a given compressor pressure ratio (i.e., shifting the surge line to the left on the compressor map), including but not limited to: application Ser. No. 14/642,825 filed on Mar. 10, 2015; Ser. No. 14/551,218 filed on Nov. 24, 2014; Ser. No. 14/615,428 filed on Feb. 6, 2016; Ser. No. 15/446,054 filed on Mar. 1, 2017; Ser. No. 15/446,090 filed on Mar. 1, 2017; Ser. No. 15/456,403 filed on Mar. 10, 2017; Ser. No. 15/836,781 filed on Dec. 8, 2017; Ser. No. 15/806,267 filed on Nov. 7, 2017; Ser. No. 15/822,093 filed on Nov. 24, 2017; Ser. No. 15/907,420 filed on Feb. 28, 2018; Ser. No. 15/904,493 filed on Feb. 26, 2018; and Ser. No. 15/909,899 filed on Mar. 1, 2018; the entire disclosures of all of said applications being hereby incorporated herein by reference. Inlet-adjustment mechanisms in accordance with said applications generally include a plurality of blades or vanes that collectively circumscribe an orifice whose effective diameter is adjustable by movement of the blades or vanes radially inwardly or outwardly. By adjusting the effective compressor inlet diameter to a reduced value at operating conditions where surge may be imminent, the surge line on the compressor map is shifted toward lower flow rates, thereby preventing surge from occurring at said operating conditions.
The present application is concerned with improvements to turbochargers having an inlet-adjustment mechanism generally of the type described above.
The present disclosure is directed to turbochargers having a centrifugal compressor and having an inlet-adjustment mechanism for the compressor that can enable the surge line for the compressor to selectively be shifted to the left (i.e., surge is delayed to a lower flow rate at a given pressure ratio). Applicant has discovered an unexpected synergy that exists between the operation of the inlet-adjustment mechanism and a modified diffuser configuration for the compressor. One embodiment described herein comprises a turbocharger having the following features:
a turbine housing and a turbine wheel mounted in the turbine housing and connected to a rotatable shaft for rotation therewith, the turbine housing receiving exhaust gas and supplying the exhaust gas to the turbine wheel;
a centrifugal compressor assembly comprising a compressor housing and a compressor wheel mounted in the compressor housing and connected to the rotatable shaft for rotation therewith, the compressor wheel having blades and defining an inducer portion and an exducer portion, the compressor housing having an air inlet wall defining an air inlet for leading air generally axially into the compressor wheel, the compressor housing further defining a volute for receiving compressed air discharged generally radially outwardly from the compressor wheel;
a compressor inlet-adjustment mechanism disposed in the air inlet of the compressor housing and adjustable between an open position and a closed position, the inlet-adjustment mechanism in the closed position forming an orifice of reduced diameter relative to a nominal diameter of the inlet; and
the compressor housing defining a diffuser disposed between the exducer portion of the compressor wheel and the volute, the diffuser receiving the compressed air from the compressor wheel and diffusing the compressed air and delivering the diffused compressed air into the volute, wherein the diffuser is formed between a first wall and a second wall, and along at least a portion of a radial length of the diffuser the first and second walls diverge from each other in a radially outward direction.
Conventional centrifugal compressors typically include a diffuser that is formed between two walls that are parallel to each other. Although the axial spacing between the walls is constant along the flow direction through the diffuser, the flow area increases linearly with radius along the flow direction. In accordance with the invention, however, the flow area increases more rapidly than for parallel-wall diffusers because the axial spacing between the first and second walls increases in the radially outward direction along the diffuser. Unexpectedly, it has been found that when the divergent-wall diffuser is used in a compressor having an inlet-adjustment mechanism, closing of the inlet-adjustment mechanism results in a greater shift of the surge line to lower flow rates on the compressor map, in comparison with an otherwise identical compressor having a conventional parallel-wall diffuser. Yet when the inlet-adjustment mechanism is open, the divergent-wall diffuser has comparatively little effect on the compressor map.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present inventions now will be described more fully hereinafter with reference to the accompanying drawings, in which some but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
A turbocharger 10 in accordance with one embodiment of the invention is illustrated in axial end view in
The turbine wheel 22 is disposed within a turbine housing 24 that defines an annular chamber 26 for receiving exhaust gases from an internal combustion engine (not shown). The turbine housing also defines a nozzle 28 for directing exhaust gases from the chamber 26 generally radially inwardly to the turbine wheel 22. The exhaust gases are expanded as they pass through the turbine wheel, and rotatably drive the turbine wheel, which in turn rotatably drives the compressor wheel 14 as already noted.
With reference to
The compressor housing 16 defines a shroud surface 16s that is closely adjacent to the radially outer tips of the compressor blades. The shroud surface defines a curved contour that is generally parallel to the contour of the compressor wheel.
In accordance with the invention, the compressor of the turbocharger includes an inlet-adjustment mechanism 100 disposed in the air inlet 17 of the compressor housing. The inlet-adjustment mechanism is operable for adjusting an effective diameter of the air inlet into the compressor wheel. As such, the inlet-adjustment mechanism is movable between an open position and a closed position, and various points intermediate said positions.
With reference now to
As shown in
Alternatively, instead of a cartridge form of inlet-adjustment mechanism, the inlet-adjustment mechanism can comprise a non-cartridge assembly in which the pins 104 for the blades 102 are secured in the compressor housing 16 and/or the inlet duct member 16d. Stated differently, the end plate 105 becomes an integral portion of the compressor housing 16 and the other end plate 107 becomes an integral portion of the inlet duct member 16d.
The range of pivotal movement of the blades is sufficient that the blades can be pivoted radially outwardly (by rotation of the unison ring in one direction, clockwise in
The blades can also be pivoted radially inwardly (by rotation of the unison ring in the opposite direction, counterclockwise in
The invention is not limited to inlet-adjustment mechanisms having arcuate pivotable blades as shown. Various other types of inlet-adjustment mechanisms can be used in the practice of the present invention, including but not limited to the mechanisms described in the commonly owned Applications as previously noted and incorporated herein by reference.
At low flow rates (e.g., low engine speeds), the inlet-adjustment mechanism 100 can be placed in the closed position of
At intermediate and high flow rates, the inlet-adjustment mechanism 100 can be partially opened as in
In accordance with the invention, an unexpected synergy is achievable between the operation of the inlet-adjustment mechanism 100 and the diffuser 19 because the diffuser is a divergent-wall diffuser. With reference to
The test results were unexpected. It can be seen that with the inlet-adjustment mechanism open, the surge lines for the parallel-wall diffuser and the divergent-wall diffuser are nearly the same. However, when the inlet-adjustment mechanism is closed, the amount by which the surge line is shifted to lower flow rates with the divergent-wall diffuser is substantially larger than the shift with the parallel-wall diffuser. These results are not yet fully understood, but it is theorized that at low flow rates, flow separation occurs on the divergent wall 19b because of the rapid diffusion that would be demanded by the divergent-wall diffuser, and the flow separation zone results in the effective width of the diffuser actually being reduced. It is thought that this flow-separation effect is substantially more-pronounced when the inlet-adjustment mechanism is closed because of the higher flow velocity leaving the compressor exducer 14e (
In any case, regardless of the specific fluid mechanics occurring, the test results clearly indicate a substantial benefit in terms of delay of surge with the divergent-wall diffuser.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. For example, although in the illustrated embodiment the divergent-wall diffuser has a first wall 19a that is radial and a second wall 19b that is conical, the invention is not limited to any particular wall shapes for achieving the divergent diffuser. One wall or both walls can be non-radial (i.e., inclined with respect to an rθ plane), and non-conical walls can be employed. Additionally, in the illustrated embodiment, the divergent wall 19b is inclined with respect to an rθ plane all the way to the exit of the diffuser. In other embodiments, however, the diffuser can include a portion that has parallel walls, and the parallel-wall portion can be located anywhere along the radial length of the diffuser. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
3860360 | Yu | Jan 1975 | A |
5529457 | Terasaki | Jun 1996 | A |
20020106278 | Koga | Aug 2002 | A1 |
20050058535 | Meshenky | Mar 2005 | A1 |
20130294903 | Tomita | Nov 2013 | A1 |
20150132120 | Yoeda | May 2015 | A1 |
20160076553 | Bessho | Mar 2016 | A1 |
20170298953 | Lombard | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
58183899 | Oct 1983 | JP |
2009236035 | Oct 2009 | JP |
Entry |
---|
Extended European Search Report for EP Appl. No. 20153223.1-1007, dated Jul. 24, 2020. |
Number | Date | Country | |
---|---|---|---|
20200291851 A1 | Sep 2020 | US |