This application is a §371 national stage entry of International Application No. PCT/EP2006/004908, filed May 23, 2006, which claims priority to EP Application No. 05023173.7, filed Oct. 24, 2005, the disclosures of which are both hereby incorporated by reference.
1. Field of the Invention
The invention relates to a turbocharger with a sealing device which has a sealing ring for sealing the bearing housing oil space with respect to the compressor space.
2. Description of the Related Art
A turbocharger of this type is known, for example, from U.S. Pat. No. 4,420,160.
This turbocharger has a sealing device for sealing a bearing housing oil space with respect to a compressor space, which sealing device is provided with a sealing ring which is mounted in a fixed position in the bearing housing. The sealing ring has sealing end faces which bear against rotating counter-faces to produce the sealing effect. Because the production of a sealing effect therefore necessitates a mechanical abutment between the end faces of the sealing ring and the opposite counter-faces rotating with the compressor shaft, mechanical wear and therefore deterioration of the sealing effect is unavoidable, at least after a certain running time of the turbocharger.
It is therefore the object of the present invention to create a turbocharger which is provided with a sealing device which makes possible a longer service life as a result of at least significantly reduced wear of the sealing faces, and therefore a better sealing effect.
This object is achieved by the sealing device according to the invention.
The turbocharger according to the invention has, specifically, a sealing device which has a sealing ring for sealing the bearing housing oil space with respect to the compressor space. This sealing ring is arranged in the bearing housing and is provided with two end faces which are provided with associated end faces of a disk on one side and of a sealing bush on another side in order to produce the sealing effect, the disk and the sealing bush being fixed to the rotor shaft.
Because the sealing ring is arranged on the rotor shaft with axial play between the disk and the sealing bush, during assembly the sealing ring usually abuts against one of the two end faces (that is, either the end face of the disk or that of the sealing bush). During operation of the turbocharger, the sealing ring is released from the abutment position and forms, depending on the existing pressure difference between compressor side and bearing housing side, a delivery gap with the respective associated end face. Primarily as a result of the delivery device which forms the delivery gap with the respective associated end face of the sealing ring, an air flow is produced which leads to the formation of air cushions between each of the non-rotating, fixed end faces of the sealing ring and the associated rotating end faces of the disk and the sealing sleeve. This air flow prevents, firstly, flow of oil from the bearing housing in the direction of the compressor and, secondly, direct mechanical contact between the end faces producing the seal, which at least considerably reduces wear on the turbocharger according to the invention.
The air flow mentioned is produced by the delivery devices or delivery structures arranged in the two end faces of the sealing ring, which are oppositely oriented, meaning that, essentially, either the compressor-side delivery device delivers air from the outer circumference to the inner circumference, or the bearing housing-side delivery device effects a delivery of air from the inner circumference to the outer circumference. This means, specifically, that, with a diminishing gap, the compressor-side delivery device pumps the air from the compressor housing from radially outside to radially inside, or, with a diminishing gap, the bearing housing-side delivery device conducts the air from inside to radially outside. In both cases the air is conducted into an axial gap between the inner circumference of the sealing ring and the sealing bush and can thus reach the bearing housing side from the compressor side. This gives rise to an approximately U-shaped, forced air flow which, as stated, produces the sealing effect and prevents mechanical abutment between the opposite fixed and rotating end faces.
Advantageous developments of the turbocharger according to the invention are set forth in the claims.
In accordance with one embodiment of the invention, the inventive sealing device is an object which can be sold independently.
Further details, features and advantages of the invention are apparent from the following description of exemplary embodiments with reference to the drawing, in which:
The sealing device 20 has for this purpose a sealing ring 1 which is arranged in a fixed, i.e. non-rotating, manner in the bearing housing 7, and two end faces 17 and 17′. These end faces 17 and 17′ cooperate respectively with end faces 10 and 11 of a disk 9 or of a sealing bush 16 to produce the sealing effect of the sealing device 20.
The flanges 16A and 16B guide an axial bearing 21. The flange 16A also delimits, together with the disk 9, a groove in which the sealing ring 1 is inserted with axial play, that is, with play in the longitudinal direction of the rotor shaft 12.
Within the groove delimited by the disk 9 and the flange 16A, the sealing ring 1 is likewise inserted with a radial play S forming an annular gap.
Delivery devices 2 and 3 are arranged respectively in the end faces 17 and 17′ of the sealing ring 1, the delivery device 2 being on the compressor side while the delivery device 3 is arranged on the bearing housing side 3. These delivery devices can be seen in
To this end the sealing ring 1 is mounted in a floating manner in the bearing housing 7. In the especially preferred embodiment shown in
The connection between the sealing ring and the end region 5A may be positive, nonpositive or frictional. A combination of these types of connection is also possible.
The other end region 5B of the elastomer molding 5 is fixed by a second retaining ring 6 in a bore of the bearing housing 7 or in an additional part 8 which represents a kind of cover with which the opening of the bearing housing 7 can be closed, as can be seen in detail from the graphic representation in
The sealing device 20 explained above seals the bearing housing oil space 13 with respect to the compressor space 14. The sealing function is hereby performed by the sealing ring 1, which is arranged between the concurrently rotating end faces 10 and 11 of the disk 9 and of the annular flange 16A respectively. During assembly the sealing ring 1 usually rests against one of the two said end faces 10 and 11. During operation of the turbocharger, depending on the pressure difference between the compressor and bearing housing sides, an air cushion is built up between the fixed end face 17 of the sealing ring 1 and the rotating end face 11 by the flow generated in the delivery gap by the relevant delivery device 2 or 3, or the air cushion is formed by the feed effect between the fixed end face 17′ and the rotating end face 10. The delivery devices or delivery structures 2 and 3 produce an air flow in the direction of the bearing housing oil space 13, which prevents oil from flowing out of the bearing housing 7 in the direction of the compressor.
Stated more precisely, the delivery device 2 generates an air flow from the compressor housing 7 from radially outside to radially inside. The air is then conducted into the axial gap S and guided from inside to outside in the region of the annular flange 16a, so that a forced airflow which is approximately U-shaped is produced.
As explained previously, egress of oil in the direction of the compressor is thereby prevented and, in addition, a mechanical abutment of the fixed end faces 17 and 17′ of the sealing ring 1 against the opposite, rotating sealing faces of the rotor shaft assembly formed by the rotor shaft 12, the disk 9 and the sealing bush 16 is avoided.
The retaining ring 4 which presses the elastomer molding 5 against the sealing ring 1 may additionally be used, by appropriate configuration (recesses, tongues, cams, etc.), for positive torque-transmission between the sealing ring 1 and the bearing housing 7.
Number | Date | Country | Kind |
---|---|---|---|
05023173 | Oct 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/004908 | 5/23/2006 | WO | 00 | 8/29/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/048451 | 5/3/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4196910 | Aizu | Apr 1980 | A |
4268229 | Berg | May 1981 | A |
4389052 | Shimizu et al. | Jun 1983 | A |
4502693 | Lesiecki et al. | Mar 1985 | A |
4986733 | Fleury et al. | Jan 1991 | A |
5129782 | Ruetz | Jul 1992 | A |
5890881 | Adeff | Apr 1999 | A |
7086842 | Wild | Aug 2006 | B2 |
20010036403 | Heyes | Nov 2001 | A1 |
20020141862 | McEwen | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
2503478 | Oct 1982 | FR |
1210388 | Oct 1970 | GB |
Number | Date | Country | |
---|---|---|---|
20080317596 A1 | Dec 2008 | US |