Field of the Invention
The present invention relates generally to an automatic control scheme. More particularly the present invention relates to a method and apparatus for protecting a turbocompressor from surge by monitoring crucial vibration information and acting thereon.
Background Art
Compressor surge and stall represent unstable operating regimes of axial and centrifugal turbocompressors. Either mode of instability may lead to compressor damage. First, rotor vibration due to the unsteady flow of stall can cause flutter and associated fatigue. The flow reversal of surge results in an increase in temperature within the compressor. At the same time, the reversed flow and pressure variations between the intake and discharge ends of the compressor cause rapid changes in axial thrust, thereby risking damage to the thrust bearing and causing blades or vanes to rub on the compressor housing. Furthermore, abrupt speed changes may occur, possibly resulting in overspeed or underspeed of the compressor rotor
The aerodynamics of rotating stall and surge have been investigated extensively. This research has led to common industry definitions of local stall, stage stall, stall zone, surge and rotating stall. Local stall is a flow separation or reversal in either an impeller or diffuser in a limited angular range. Stage stall is when a local stall increases to the point where one in a series of centrifugal impellers (and associated inlet and discharge stationary components) experiences reversed flow in part of its cross-sectional flow area. In any stalled condition, the overall flow is still in a forward, pressurizing direction. A stall zone is any cross-sectional area of an impeller or diffuser undergoing a flow perturbation and which manifests symptoms of a stall in a compressor. Surge is defined as the periodic oscillations of the bulk compressor flow and its associated periodic pressure swings. If these oscillations include flow reversals, deep surge is said to have occurred. Rotating stall comprises stall zones covering several blades and passages. The stall zones propagate circumferentially at a fraction of rotor speed. The number of stall zones and the propagating rates vary between compressors.
A compressor and traditional antisurge control system are shown in
Typical compressor drivers 105 comprise steam or gas turbines and electric motors. The antisurge valve 150 may be a recycle valve such as that shown in
Traditionally independent of the antisurge control system, vibration data are taken at radial bearing locations, at the thrust bearing, and at other locations on the compressor to monitor movement and vibration of the compressor rotor or impeller shaft. During operation, the compressor shaft is held against a thrust bearing with slight movement depending on operating rotational speed and other conditions.
Compressor surge is described in several textbooks and many articles. One such textbook is Aircraft Propulsion by Saeed Farokhi (ISBN 978-0-470-03906), published by John Wiley and Sons, is hereby incorporated in its entirety by reference. Simply speaking, surge can be defined as a point where the compressor can no longer maintain an adequate pressure difference to continue forward flow, and a bulk flow reversal occurs. Detecting the rapid reversal in flow when using an obstruction flow meter is fairly straightforward. Some compressors, however, are not fitted with a flow meter of any kind. Further, sensors and transmitters can fail so other methods to detect surge and to provide antisurge control would be of value.
There is, therefore, a need for a method and apparatus to detect surge and protect a compressor therefrom using signals other than those of thermodynamic nature.
An object of the present invention is to provide a method and apparatus for effectively detecting turbocompressor surge using mechanical signals such as displacement and vibration. Another object of this invention is to provide antisurge control based on information gleaned from these mechanical signals.
As explained above, compressor surge is the bulk reversal of the flow direction in the compressor. That is, effectively across the full span and effectively around the entire annulus of the compressor, the fluid flow direction reverses, or at least drops to a very low level, because the compressor cannot maintain an adequate differential pressure from inlet to outlet. Because the differential pressure across the compressor rotor drops, and because of the reversed flow direction, the compressor's rotor shaft is free to move off its thrust bearing. Significant axial displacement and vibration results.
The present method monitors the axial position of the rotor shaft and detects the event when the rotor shaft is displaced from the thrust bearing, indicating surge. The axial vibration amplitude, measured in a specific frequency band, increases during surge.
When surge is detected using this method, a control system can take corrective action to extract the compressor from its surge condition.
The use of vibration data to detect surge provides an independent method to the flow path (thermodynamic) method used in the common, present day, antisurge control system. Thermodynamic transmitter failures or compressor map configuration errors do not affect the ability to detect surge based on vibration data.
The proposed system uses narrow-band frequency analysis on the vibration data, Vibration monitoring and Fourier transforms are outlined in many undergraduate textbooks. Two such textbooks are Fundamentals of Mechanical Vibrations by S. G. Kelly (2000) (ISBN 0-70-230092-2), published by McGraw-Hill, and Elements of Vibration Analysis by L. Merovitch (1975) (ISBN 0-70-041340-1), published by McGraw-Hill. Both of these texts are hereby incorporated in their entirety by reference.
The technique of the present invention allows the system to monitor specific frequency bands that tend to only respond to surge. These bands can be set for each controller based on the ambient noise floor and result in significantly higher signal-to-noise ratio when surge occurs.
Surge detection is based on a ratio of the current vibration to background vibration in each band. The background is continuously monitored and a mean value is calculated over a set time period. A set-point is calculated based on a ratio of the current value and the background value, helping to improve the signal to noise ratio. The magnitude of this set-point is determined based on the type compressor and operating conditions and may be customized for each compressor. When the set-point has been exceeded, surge is imminent or has occurred. This is true for both the axial and radial vibration.
In addition to vibration, the position of the rotor is also monitored. Axial position indicates movement of the rotor from the thrust bearing. During operation, the differential pressure across the rotor causes a small axial displacement of the rotor. When this displacement exceeds an allowable limit, surge has occurred.
Typically eddy current proximity probes are used to measure the vibration and position of the compressor rotor. Sensors other than axial and radial proximity may also be used instead of or in addition to proximity sensors to detect surge if they are mounted in a suitable location and the background noise is sufficiently low.
The novel features believed to be characteristic of this invention, both as to its organization and method of operation together with further objectives and advantages thereto, will be better understood from the following description considered in connection with the accompanying drawings hi which a presently preferred embodiment of the invention is illustrated by way of example. It is to be expressly understood however, that the drawings and examples are for the purpose of illustration and description only, and not intended in any way as a definition of the limits of the invention.
The compressor 100 is equipped with a vibration monitoring system, including a vibration monitor 200 and one or more vibration sensors 210, 220, such as an axial displacement, velocity, or acceleration sensor 210, and radial displacement, velocity, or acceleration sensors 220. The vibration monitor 200 provides signal conditioning for the purpose of more accurately detecting surge. Additionally, the vibration monitor provides a signal that may be conveyed to an antisurge controller 140, or directly as a set point to the antisurge valve 150, 250 to avoid, prevent, or recover from a compressor surge. Thus, the vibration monitor 200 may be part of a monitoring system that generates a compressor stability indication based on the mechanical measurements described above. The sensors 210, 220 may include sensors 210, 220 operatively attached to the bearings of compressor rotor shaft 230. A thrust bearing 240 as well as a plurality of radial bearings 245, are illustrated along the compressor rotor or impeller shaft 230 in
The axial vibration sensor 210 senses axial displacement, velocity, or acceleration of the compressor shaft 230 at the thrust bearing 240. A signal representing this measurement is transmitted to the vibration monitor 200. Similarly, the radial beatings 245 are shown with radial sensors 220 operatively attached thereto. The radial displacement sensors 220 for the radial bearings 245 transmit radial shaft displacement, velocity, or acceleration signals to the vibration monitor 200. Generally, a rotational speed sensor 260 is provided to sense the compressor shaft's angular speed. The signal from the speed sensor 260 is transmitted to the vibration monitor 200. This signal may be unnecessary, especially for a constant speed driver, such as many electric motors.
Ultimately, an antisurge valve 350 must be actuated under surge conditions to increase the flow rate through the turbocompressor. The antisurge valve 350 may be a recycle valve 150 or a blowoff valve 250. On rare occasion, a compressor's purpose is to provide a vacuum, in which case the antisurge valve is disposed on the suction side of the air compressor, and is actuated the same as the blowoff valve 250. The vibration monitor 200 may provide the antisurge valve position set point directly, as indicated in
where D is a current displacement level, calculated as a suitable vector norm such as a Root Mean Squared (RMS) value of displacement. The background displacement, Db 410, may he recalculated at different operating conditions any time the compressor is not in surge.
The difference between the current displacement level, Dc 405, and the background displacement level, Db 410, is determined in a difference operation 415. In other words, d=Dc−Db. The absolute value of d is found in the absolute value operation 420, or |d|=|Dc−Db|. The background displacement level, Db 410, is divided into the absolute value of d, as:
in the division operation 425. A set point, R, may be a function 427 of the background displacement level, Db 410, such as (l+n)Db, where n is a number greater than zero. For instance, if n=0.1. When the absolute value of d exceeds the background displacement level, Db 410, by 10%, then r=R.
As long as r<R, the comparator function 430 returns a false, thus concluding the compressor 100 is not in surge. When r≥R, the comparator function 430 returns a true, thus concluding the compressor 100 is in surge.
where V is a current vibration level, calculated as a suitable vector norm such as an RMS value of velocity or acceleration. Those of ordinary skill in the art are well aware of the calculation of an RMS value:
The background vibration, Vb 440, may be recalculated at different operating conditions any time the compressor is not in surge.
The ratio of the current vibration level, Vc, 435, to the background vibration level, Vb 440, is determined in a division operation 445. In other words,
A set point, R, may be a function 427 of the background vibration level, Vb 440, such as (1+n)Vb, where n is a number greater than zero. For instance, if n=0.1, when the current vibration level, Vc, 435, exceeded the background vibration level, Vb 440, by 10%, then r=R.
In As long as r<R, the comparator function 430 returns a false, thus concluding compressor 100 is not in surge. When r≥R, the comparator function 430 returns a true, thus concluding the compressor 100 is in surge.
The above conclusions may be used as illustrated in
The individual curves having non-positive slopes in
A typical antisurge control system will incorporate a digital depiction of the compressor map such that the control system can compare the location of the compressor's operating point to the surge control curve.
Consider a compressor operating point 620 as illustrated in
Other uses of the conclusions drawn from the logic diagram of
The set point, R, is used in a difference operation 720, to calculate the value r−R. As above, R may be a function 725 of the background displacement, Db, as illustrated. The value, r−R, is used in two separate branches of the logic path, in the lower branch, the absolute valve of r−R is determined in an absolute value operation 730. In the upper branch, the value r−R remains unchanged. In a summation operation 740, the sum of these two values, i.e., r−R|r−R| is found. This value must be nonnegative. This last sum is halved in a halving operation 750 before it is used as a process variable, PV, in a Proportional, Integral, Differential (PID) loop. The PID loop then calculates the set point for the recycle valve 350.
In the PID loop, the process variable, PV, signal may be processed to, for instance, reduce noise. Then an output of the PID loop is calculated as:
which is used as the set point for the antisurge valve. In this equation, P is the coefficient for the proportional term, I is the coefficient for the integral term, D is the coefficient for the derivative term, and tt is the loop time of the control loop. Those of ordinary skill in the art are well familiar with PID loops.
The set point, R, is used in a difference operation 720, to calculate the value r−R. As above, R may be a function 725 of the background vibration, Vb, as illustrated. The value, r−R, is used in two separate branches of the logic path. In the lower branch, the absolute value of r−R is determined in an absolute value operation 730. In the upper branch, the value r−R remains unchanged. In a summation operation 740, the sum of these two values, i.e., r−R+|r−R| is found. This value must be nonnegative. This last sum is halved in a halving operation 750 before it is used as a process variable, PV, in a Proportional, Integral, Differential (PID) loop. The PID loop then calculates the set point for the recycle valve 350.
In the PID loop., the process variable, PV, signal may be processed to, for instance, reduce noise. Then an output is calculated as above, and is used as the set point for the antisurge valve.
A plot of a Fourier transform of the axial vibration data taken from a compressor is shown in
The Fourier transform of radial vibration of a compressor is plotted in
Another preferred embodiment of the present invention is shown in
The above embodiments are the preferred embodiment, but this invention is not limited thereto, nor to the figures and examples given above. It is, therefore, apparent that many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
The present application is a continuation of U.S. application Ser. No. 13/473,237 filed May 16, 2012, the contents of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6536284 | Bonanni | Mar 2003 | B2 |
8152496 | White | Apr 2012 | B2 |
20100296914 | Staroselsky | Nov 2010 | A1 |
20130166082 | Ambekar | Jun 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20170218968 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13473237 | May 2012 | US |
Child | 15488782 | US |