The embodiments of the subject matter disclosed herein generally relate to power generation systems and more particularly to turboexpanders.
Rankine cycles use a working fluid in a closed-cycle to gather heat from a heating source or a hot reservoir by generating a hot gaseous stream that expands through a turbine to generate power. The expanded stream is condensed in a condenser by transferring heat to a cold reservoir and pumped up to a heating pressure again to complete the cycle. Power generation systems such as gas turbines or reciprocating engines (primary system) produce hot exhaust gases that are either used in a subsequent power production process (by a secondary system) or lost as waste heat to the ambient. For example, the exhaust of a large engine may be recovered in a waste heat recovery system used for production of additional power, thus improving the overall system efficiency. A common waste heat power generation system operating in a Rankine cycle is shown in
The power generation system 100 includes a heat exchanger 2, also known as a boiler or evaporator, an expander 4, a condenser 6 and a pump 8. In operation, beginning with the heat exchanger 2, an external heat source 10, e.g., hot flue gases, heats the heat exchanger 2. This causes the received pressurized liquid medium 12 to turn into a pressurized vapor 14, which flows to the expander 4. The expander 4 receives the pressurized vapor stream 14 and can generate power 16 as the pressurized vapor expands. The expanded lower pressure vapor stream 18 released by the expander 4 enters the condenser 6, which condenses the expanded lower pressure vapor stream 18 into a lower pressure liquid stream 20. The lower pressure liquid stream 20 then enters the pump 8, which both generates the higher pressure liquid stream 12 and keeps the closed loop system flowing. The higher pressure liquid stream 12 then flows in to the heat exchanger 2 to continue this process. One working fluid that can be used in a Rankine cycle is an organic working fluid. Such an organic working fluid is referred to as an organic Rankine cycle (ORC) fluid. ORC systems have been deployed as retrofits for engines as well as for small-scale and medium-scale gas turbines, to capture waste heat from the hot flue gas stream. This waste heat may be used in a secondary power generation system to generate up to an additional 20% power in addition to the power delivered by the engine producing the hot flue gases alone.
Because of safety concerns that such ORC fluid may get into direct contact with the high-temperature gas turbine exhaust gasses (approx. 500 degrees Celsius), measures need to be taken to avoid a direct contact between the ORC fluid (e.g., cyclopentane) and the gas turbine exhaust gasses. A method currently used for limiting the surface temperature of the heat exchanging surfaces in an evaporator which contains the ORC working fluids is to introduce an intermediate thermo-oil loop into the heat exchange system, i.e., to avoid the ORC fluid circulating through the exhaust stack of the gas turbine.
The intermediate thermo-oil loop can be used between the hot flue gas and the vaporizable ORC fluid. In this case, the intermediate thermo-oil loop is used as an intermediate heat exchanger, i.e., heat is transferred from the hot flue gas to the oil, which is in its own closed loop system, and then from the oil to the ORC fluid using a separate heat exchanger as shown in dual fluid heat exchange circuit 200 of
In operation of the ORC fluid circuit 226 beginning with the pump 216, a lower pressure ORC liquid stream enters the pump 216, which both generates a higher pressure ORC liquid stream and keeps the closed loop system flowing. The higher pressure ORC liquid stream then is pumped through a recuperator 218 and preheaters 214 prior to evaporation at the heat exchanger/evaporator 212. This causes the received pressurized ORC liquid medium 12 to turn into a pressurized ORC vapor, which flows to an expander 220 which is mechanically coupled to generator 222 (or the like). The expander 220 receives the pressurized ORC vapor stream for assisting in the creation of power and creates an expanded lower pressure ORC vapor stream which continues on back through the recuperator 218 and onto the condenser 224, which condenses the expanded lower pressure ORC vapor stream into a lower pressure ORC liquid stream.
Therefore, the intermediate thermo-oil loop allows for separating the ORC fluid from direct exposure to the hot flue gas. Additionally, while the oil used in the intermediate thermo-oil loop is flammable, this oil is generally less flammable than ORC working fluids. However, this thermal oil system takes additional physical space and can represent up to one quarter of the cost of an ORC system.
As seen in
Accordingly, systems and methods for reducing the footprint and cost of power generation systems are desirable.
According to an exemplary embodiment there is a system for power generation. The system includes: a turboexpander configured to include an expander section, a pump section and a motor-generator section which are mechanically linked via a shaft; the expander section is fluidly connected to an outlet side of a heat exchanger and configured to receive a vapor stream of a fluid, to rotate the shaft and to generate an expanded vapor stream of the fluid; the pump section is fluidly connected to an outlet side of a condenser and configured to receive a liquid stream of the fluid, to pressurize the liquid stream of the fluid and to circulate the fluid in the power generation system; the motor-generator section is configured to generate and output an electrical current.
According to another exemplary embodiment there is a turboexpander. The turboexpander includes: a turboexpander to only include an expander section, a pump section and a motor-generator section which are mechanically linked via a shaft and only two fluid inlets and only two fluid outlets, wherein the turboexpander does not include a compressor section; the expander section is fluidly connected to an outlet side of a heat exchanger and configured to receive a vapor stream of a fluid, to rotate the shaft and to generate an expanded vapor stream of the fluid, wherein the expander stage includes one or more expansion stages; the pump section is fluidly connected to an outlet side of a condenser and configured to receive a liquid stream of the fluid, to pressurize the liquid stream of the fluid and to circulate the fluid in the power generation system, wherein the pump section includes one or more pump stages; the motor-generator section configured to generate and output an electrical current; the condenser is fluidly connected to an outlet side of the expander and configured to receive and condense the expanded vapor stream of the fluid into the liquid stream of the fluid; and the heat exchanger is fluidly connected to an outlet side of the pump section and configured to receive the liquid stream of the fluid and to generate the vapor stream of the fluid.
According to another exemplary embodiment there is a system for power generation. The system includes: a turboexpander to only include an expander section, a pump section and a motor-generator section which are mechanically linked via a shaft, the turboexpander having only two fluid inlets and only two fluid outlets, and does not include a compressor section; the expander section is fluidly connected to an outlet side of a heat exchanger and configured to receive a vapor stream of a fluid, to rotate the shaft and to generate an expanded vapor stream of the fluid, wherein the expander stage includes one or more expansion stages; the pump section is fluidly connected to an outlet side of a condenser and configured to receive a liquid stream of the fluid, to pressurize the liquid stream of the fluid and to circulate the fluid in the power generation system, wherein the pump section includes one or more pump stages; the motor-generator section configured to generate and output an electrical current; the condenser is fluidly connected to an outlet side of the expander and configured to receive and condense the expanded vapor stream of the fluid into the liquid stream of the fluid; and the heat exchanger is fluidly connected to an outlet side of the pump section and configured to receive the liquid stream of the fluid and to generate the vapor stream of the fluid.
The accompanying drawings illustrate exemplary embodiments, wherein:
The following detailed description of the exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. Additionally, the drawings are not necessarily drawn to scale. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims.
Reference throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification is not necessarily referring to the same embodiment. Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
As described in the Background, and shown in
According to exemplary embodiments, a power generation system 400 illustrated in
The expanded lower pressure vapor stream released by the expander section 404 flows through the recuperator 218 for heat exchange and then enters a condenser 224, which condenses the expanded lower pressure vapor stream into a lower pressure liquid stream. The lower pressure liquid stream then enters the pump section 408 of the turboexpander 402, which both generates the higher pressure liquid stream and keeps the closed loop system flowing. The higher pressure liquid stream then is pumped to the heat exchanger 410 to continue this process. A portion of the higher pressure liquid stream may be split and used to cool the motor-generator section 406 as shown by the line 412. The higher pressure liquid stream passes recuperator 218 and cools the stream from the expander section 404. Also shown in
According to another exemplary embodiment, the turboexpander 504 can include two expansion stages 404 and 502 as shown in
According to exemplary embodiments, one working fluid that can be used in a Rankine cycle is an organic working fluid such as an organic Rankine cycle (ORC) fluid. Examples of ORC fluids include, but are not limited to, pentane, propane, cyclohexane, cyclopentane, butane, a fluorohydrocarbon such as R-245fa, a ketone such as acetone or an aromatic such as toluene or thiophene. However, as mentioned in the Background section, when directly exposed to high temperatures there is a risk of degradation of the ORC fluid. Therefore, according to exemplary embodiments, an intermediate thermo-oil loop can be used in power generation systems which use the exemplary turboexpander 402 as shown in
According to exemplary embodiments illustrated in
According to exemplary embodiments, the turboexpander 402 can have only two fluid inlets 602, 606 and only two fluid outlets 604, 608. By having these four fluid inlets/outlets in the turboexpander 402 the loss of process gas to the environment is greatly reduced from traditional systems, e.g., turboexpander 402 does not include the traditional environmental seals which are prone to hazardous gas leakages. Additionally, by having the exemplary turboexpander 402 as described herein, shipping weight and plant footprint size are both reduced when compared to a traditional power generation system.
According to alternative exemplary embodiment, turboexpander 504 can have the expansion stages receive the process gas in series as shown in
According to exemplary embodiments, the motor-generator section 406 can be a high speed generator, e.g., a 3 MW and/or a 6 MW. This motor-generator 406 can operate at a same rotation speed generated by the expander section 404 which allows for the non-inclusion of a gear box. An output of the motor-generator 406 can be a direct current or an alternating current. According to an exemplary embodiment, magnetic bearings can be used in the motor-generator 406. According to an alternative exemplary embodiment, oil lubrication can be used instead of magnetic bearings in the motor-generator 406.
The above-described exemplary embodiments are intended to be illustrative in all respects, rather than restrictive, of the present invention. Thus the present invention is capable of many variations in detailed implementation that can be derived from the description contained herein by a person skilled in the art. All such variations and modifications are considered to be within the scope and spirit of the present invention as defined by the following claims. No element, act, or instruction used in the description of the present application should be construed as critical or essential to the invention unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other example are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements within the literal languages of the claims.
Number | Date | Country | Kind |
---|---|---|---|
CO2010A000026 | May 2010 | IT | national |