The invention relates to an improved jet engine for air planes. It also relates to air planes comprising such an improved jet engine.
Nowadays turbojets in their basic principle consist of an air inlet, an air compressor, a combustion chamber, a gas turbine (that drives the air compressor etc.) and a nozzle. The air is compressed into the chamber, heated and expanded by the fuel combustion and then allowed to expand out through the turbine into the nozzle where it is accelerated to high speed to enable propulsion. Turbojets are quite inefficient if flown below about Mach 2, and very noisy.
Most modern aircraft use turbofan jet engines instead for economic reasons. A turbofan is a type of aircraft jet engine based around a turbojet engine. A turbofan provides thrust using a combination of a ducted fan and a jet exhaust nozzle. Part of the inlet airstream from the ducted fan passes through the core inlet, providing oxygen to burn fuel to create power. However, the rest of the air flow bypasses the engine core and mixes with the faster stream from the core, significantly reducing exhaust noise. The combination of substantially slower bypass airflow plus the high speed air from the core produces thrust more efficiently than the high-speed air from the core alone, and this reduces the specific fuel consumption. Because turbofans have a net exhaust speed that is much lower than a turbojet, they are much more efficient at subsonic speeds than turbojets, and somewhat more efficient at supersonic speeds up to roughly Mach 1.6. They are also more efficient when used with continuous afterburner at Mach 3 and above. However, the lower exhaust speed may also reduce thrust at high speeds.
Publication EP 0426500 A1 describes a turbo fan jet engine driven from an LP turbine through a hollow overhung rearward extending drive shaft. The fan, turbine and shaft are co-axial. The core engine exhausts through the centre around the shaft and through a primary nozzle. Downstream of the primary nozzle the hot turbine exhaust mixes with cooler bypass air. The mixed flow finally exits through a convergent/divergent final nozzle. In the case of EP 0426500 A1 and in other known jet engines, the fan is driven by the turbine.
It is the object of the present invention to provide a jet propulsion system which has reduced fuel consumption as compared the jet engines of the state of the art mentioned above.
This object is achieved by an airplane jet engine comprising:
The core engine comprises:
Due to the proportion of the throat relative to the core engine outlet, the mixture of the two streams of gases create, at least in use, an under pressure at the outlet of the bypass duct relative to the air in front of the fan in two cooperating ways; by the venturi and by de diverging duct as explained in the following.
In the widening duct, also referred to as exhaust part, the inner wall makes an angle α with the main axis of the jet engine with a value of more than 10 degrees but less than 25 degrees. The advantage of this relatively small angle choice is that the stream of gases will stay profoundly in touch with this inner wall. The exact value of the angle depends on the properties and size of the core engine and on the properties of the gas mixture, as will be appreciated by the skilled person. For example, in a sailing boat in clean air the sails are orientated so as to keep a contact on maximum 11 degrees of the wind, which mostly determined in an empirical way.
In the invention, the venturi principle is applied such as known in burners for the combustion of gas in industry and housekeeping. The here announced version of the convergent-divergent nozzle is partly based on that principle.
Generally it has been built up out of a central high speed gas flow that is sucking additional surrounding gases or air with lower speed through the throat of the venturi.
In the present solution the central high speed gas flow is the outlet of the central engine and the additional added gases approach through the bypass duct. The mix of both quantities of gases pass the throat of the convergent/divergent nozzle as well as the same throat of the venturi and change out their different speeds and temperatures into one average speed and one average temperature.
The divergent exhaust part, i.e. duct, receives the entire quantity of mixed gases and leads them to the outside. By widening of this duct from the said throat to the outside, the surface of the cross section increases and in this way the speed of the gases decreases. Thus a change of pressure occurs between inlet and outlet of the diverging duct as a consequence of the slowing down of the gases, Bernoulli Effect.
Also the cooling down of the exhaust gases of the core engine by being mixed up with cold outside air decreases the volume of the hot gases and also decreases the speed of the exhaust gases.
In our solution higher pressure occurs at the end of the diverging duct where the speed is lowest and where the outlet is located. There the gases meet outside air and equalize their pressure to atmospheric outside pressure.
The minimum pressure occurs directly downstream the throat of the nozzle, where the speed is higher than elsewhere in the diverging duct; exactly where that low pressure is needed for being transported through the bypass to the front of the core engine.
This under pressure will suck outside approaching air and increase the air flow through the bypass. When there would be no fan in the inlet of the bypass the sucking of outside air would also cause an extra quantity of thrust. In this case we prefer for the big liners a fan in the front of the bypass to which the entering air and the under pressure will contribute to the rotation of the fan and the central shaft. This means that the fan receives energy from the under pressure and the thus caused strong stream of air through the bypass duct.
Please note that this is contrary to the state of the art turbofan bypass jet engines in which the fan causes a flow through the bypass duct.
Because of this contribution mentioned, the turbine in the rear of the core engine does not have to generate so much rotating power and needs less energy out of the hot and speedy gases to create the same rotational speed for the central shaft and so for the compressor and eventual other energy users such as an electric generator and a blower for air refreshing for passengers and crew.
By the choice of the relationship between the diameter of the throat and the diameter of the core engine outlet a relationship between the quantity of sucked outside air and available outlet gases of the core engine can be influenced. In our prototype a factor 2 worked very satisfying. Also this relationship can definitively be decided when design has seen daylight.
For generating the low pressure, the speed and heat out of the exhaust gases are used, which were almost fully wasted up till now. No decrease of performance of the core engine occurs. On the contrary: the low pressure downstream the outlet of the core engine will stimulate the performance of the core engine a little bit instead of disturbing it. Besides that a lower speed of the exhaust gases (for example from 1.800 Km/h to 900 Km/h causes less noise pollution.
According to an embodiment, the fan is a tandem fan comprising a first set of blades in an inner part of the fan, and a second set of blades in an outer part of the fan, said blades of said first set having a different pitch from the blades of the second set. Using different pitches enables the designer to optimize the relative flow through the bypass as compared to the flow through the engine.
In a further embodiment, the jet engine comprises one or more additional bypasses and valves, so that an adjustable part of the hot gases can be conducted around the turbine in the rear of the core engine adjustable to different running circumstances.
The invention also relates to an airplane comprising one or more jet engines as described above.
Further details and advantages of the present invention will become clear to the reader after reading the description of the embodiments described below with reference to the accompanying drawings, in which:
The jet engine comprises at least one bypass duct 9 where through air is bypassed with regard to the core engine 4. The bypass duct 9 has a bypass inlet 10 and a bypass outlet 11, see
In the embodiment of
Because of this contribution mentioned, the turbine 7 needs less energy to create the same rotational speed for the compressor 5 and eventual other energy users but not fully for fan 3 like formerly and nowadays is the case. This means that the turbine 7 does not have to extract so much energy out of the combustion gases as it did in the state of the art engines. And therefore more energy is still available for the creation of thrust. This will result in increase of thrust and speed, or it will result in a reduction of fuel when creating the same thrust as before with a smaller core engine now expanded by the improvements we suggest. The gain of thrust is achieved by applying a less powerful turbine in the rear 7 of the core turbojet engine 4 so that a larger part of the energy contents of the hot gases is available for generating thrust. The propelling fan 3 completes the delivery of rotating energy to the central shaft 21 of the core engine.
In an embodiment, the turbine 7 will have fewer blades as compared to the state of the art turbines. This will create a reduction in the resistance met by the combustion gases.
In another embodiment, shown in
In both the embodiments of
In an embodiment, the jet engine 1 and the turbine 7 is configured to let the fan 3 rotate at speeds of between 3000-4000 tpm. It is noted that the blades of the fan 3 can be positioned in an optimal way so as to create the wanted rotation speed.
The convergent-divergent nozzle 12 comprises a divergent exhaust part 14 that makes an angle α with a main axis 21 of the jet engine 1, for which counts 10°<α<25°. The precise value can be defined, when the characteristics and the size of the core engine and further construction are known. These values of the divergence of the exhaust part have shown good results during prototyping. Due to the continuously diverging exhaust part 14, the speed of the mixture of air and the exhaust gases will decrease which results in an increase of gas pressure (Bernouilly) until the outside is reached. There atmospherical pressure is taken over and low pressure is built up downstream the throat of the nozzle 13 and available around and in the throat of the said venturi. Besides building up a powerful low pressure source, lowering the exhaust speed will significantly reduce noise levels which is favourable for the environment.
In an embodiment, a diameter of the throat 13, see
Because of the relatively low speed of the final exhaust gases especially in low power duty circumstances a new problem rises and may threat our way to build up more under pressure in the diverging duct. When the pattern of the gas flow is turbulent, streams of gases move in many different directions and guide outside atmospheric air that is seeking the low pressure area in the diverging duct and disturb the process. To prevent this turbulent streaming pattern a number of blades or short pipes may be introduced in the final exhaust opening that will lead the gases straight to the outside. A possible solution for this is shown in
It is emphasized that the present invention can be varied in many ways, of which the alternative embodiments as presented are just a few examples. These different embodiments are hence non-limiting examples. The scope of the present invention, however, is only limited by the subsequently following claims.
Number | Date | Country | Kind |
---|---|---|---|
2007124 | Jul 2011 | NL | national |
NL2012/000049 | Jul 2012 | WO | international |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NL2012/000049 | 7/13/2012 | WO | 00 | 1/9/2014 |