None.
1. Field of the Invention
The present invention relates generally to a small turbofan engine, and more specifically to an inlet case for the turbofan engine which houses an electric generator.
2. Description of the Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98
Small gas turbine engines—under around 300 pounds of thrust—are ideal for use with small unmanned aero vehicles (UAV) because of their high efficiency and light weight compared to other types of power plants such as an internal combustion engine. A small turbofan engine would have an inlet case with a row of guide vanes to direct the inlet air flow into the fan and compressor of the engine. Typical of these small turbofan engines is the use of an electric generator carried within the inlet case, since this location is ideal in that the nose cone can store the generator and the nose cone is usually empty space.
In the prior art, the inlet case is made of either a metallic material such as aluminum, steel and titanium, or a plastic material. Both of these variations of the inlet case have major drawbacks. The electric generator creates allot of heat from operation. A metallic inlet case will be a good conductor of heat (compared to the all plastic inlet case) to transfer the heat generated by the generator. However, the metallic inlet case would be relatively heavy and require complex machining (compared to the plastic inlet case) to form the inlet guide vanes. The cost of these metallic inlet cases would be very high compared to a plastic injection molded inlet case due mainly from the machining of the airfoils. In the plastic inlet case, the plastic material does not conduct heat very well. The plastic inlet case would be much cheaper to produce compared to the metallic inlet case and relatively lighter in weight. However, the plastic inlet case would not conduct enough of the heat generated by the electric generator to be of much use.
It is an object of the present invention to produce an inlet case for a small turbofan engine that will be a good conductor of heat like that of an all-metallic inlet case, yet be cheap to produce like that of the plastic inlet case.
It is also an object of the present invention to produce an inlet case for a small turbofan engine that will be light weight in order to keep the overall weight of the engine down.
The present invention is a hybrid inlet case for the small turbofan engine in which the inlet case includes an metallic inner cylinder portion that forms the housing for the electric generator and forms the inner flow path for the air flow through the inlet case, and the guide vanes and the outer shroud are formed of plastic in an injection molding process to provide the light weight and the accurate shaped guide vane airfoils without machining. The metallic inner cylinder or shroud includes dovetail slots extending along the outer surface of the cylinder. The guide vanes are formed within the slots to secure the guide vanes and the outer shroud to the metallic inner cylinder and form the rigid hybrid inlet case. The metallic inner cylinder can be easily formed by a protrusion or a machining process because of the simplified geometry.
The present invention is also a small gas turbine engine having a hybrid inlet case formed from a metallic inner shroud cylinder with a plurality of plastic guide vanes and a plastic outer shroud injection molded around the metallic cylinder. The metallic inner shroud cylinder operatively secures an electric generator to produce electrical power during engine operation. The metallic inner shroud cylinder therefore functions as a good convective surface to transfer the heat generated from the generator away from the inner shroud and into the inlet air flowing into the guide vanes.
The present invention is also a process for producing a hybrid inlet case for a small gas turbine engine, where the hybrid inlet case is formed from a metallic inner shroud cylinder that has a plurality of axial extending slots formed along the outer surface to provide structure to secure a plurality of guide vanes to the metallic cylinder. Plastic guide vanes and a plastic outer shroud is injection molded around the metallic inner shroud cylinder to produce a rigid single piece inlet case made with a metallic inner shroud and plastic vanes and outer shroud that is both lightweight and transfer heat away from the generator and into the inlet air flow.
The present invention is an inlet case for use on a small twin spool gas turbine engine. The size of the engine is under around 300 pounds thrust. The inlet case is shown in
The hybrid inlet case is formed by injection molding of the vanes 13 and the outer shroud 12 around the metallic inner shroud cylinder 11. The aluminum inner shroud cylinder 11 with the slots formed therein is placed within a die used for the plastic injection molding process. The vanes 13 and the outer shroud 12 are then formed by the plastic injection molding process in which a plastic molten material is injected into the die to form the vanes and outer shroud 12. The lower ends 17 of the guide vanes 13 will take the shape of the slots 16 in the cylinder 11 due to the injection molding process.
With the hybrid inlet case of the present invention, the metallic inner shroud cylinder provides a good conductor of heat to draw the heat generated by the electric generator and away from the inner shroud. The inlet air flow entering the engine passes over the metallic inner shroud and draws heat away from the generator, keeping the inner shroud cylinder cool. With the plastic injection molded guide vanes, no machining of the guide vanes is required and therefore the total cost of production of the part remains low. An all metal inlet case of the prior art would cost around $2,000 to produce for each inlet case. The hybrid inlet case of the present invention costs less than $50 to produce each one, a significant cost savings. The hybrid inlet case of the present invention is also light in weight compared to the all metallic inlet case. Thus, additional savings is obtained since the engine is lighter overall and therefore more efficient as a power plant for an UAV.
The US Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Contract No. W31P4Q-05-C-R003 awarded by the United States Army.
Number | Name | Date | Kind |
---|---|---|---|
2995294 | Warnken | Aug 1961 | A |
3442442 | Seiwert | May 1969 | A |
3588267 | Wilkinson | Jun 1971 | A |
4140433 | Eckel | Feb 1979 | A |
4786347 | Angus | Nov 1988 | A |
4832568 | Roth et al. | May 1989 | A |
5074752 | Murphy et al. | Dec 1991 | A |
5494404 | Furseth et al. | Feb 1996 | A |