The subject matter disclosed herein relates to turbomachines, and more particularly to, a blade in a turbine.
A turbomachine, such as a gas turbine, may include a compressor, a combustor, and a turbine. Air is compressed in the compressor. The compressed air is fed into the combustor. The combustor combines fuel with the compressed air, and then ignites the gas/fuel mixture. The high temperature and high energy exhaust fluids are then fed to the turbine, where the energy of the fluids is converted to mechanical energy. The turbine includes a plurality of nozzle stages and blade stages. The nozzles are stationary components, and the blades rotate about a rotor.
Certain embodiments commensurate in scope with the originally claimed subject matter are summarized below. These embodiments are not intended to limit the scope of the claimed subject matter, but rather these embodiments are intended only to provide a brief summary of possible forms of the claimed subject matter. Indeed, the claimed subject matter may encompass a variety of forms that may be similar to or different from the aspects/embodiments set forth below.
In one aspect, a blade has an airfoil, and the blade is configured for use with a turbomachine. The airfoil has a throat distribution measured at a narrowest region in a pathway between adjacent blades, at which adjacent blades extend across the pathway between opposing walls to aerodynamically interact with fluid flow. The airfoil defines the throat distribution, and the throat distribution reduces aerodynamic loss and improves aerodynamic loading on the airfoil. The airfoil has a linear trailing edge profile.
In another aspect, an article of manufacture comprises an airfoil. The airfoil has a throat distribution measured at a narrowest region in a pathway between adjacent airfoils. The airfoil defines the throat distribution, and the throat distribution reduces aerodynamic loss and improves aerodynamic loading on the airfoil. The airfoil has a linear trailing edge profile, and the trailing edge profile is offset by about 1.8 degrees in an upstream axial direction and by about 1.4 degrees in a circumferential direction.
In yet another aspect, a turbomachine has a plurality of blades, and each blade has an airfoil. The turbomachine includes opposing walls that define a pathway into which a fluid flow is receivable to flow through the pathway. A throat distribution is measured at a narrowest region in the pathway between adjacent blades, at which adjacent blades extend across the pathway between the opposing walls to aerodynamically interact with the fluid flow. The airfoil defines the throat distribution, and the throat distribution reduces aerodynamic loss and improves aerodynamic loading on the airfoil. The airfoil has a linear trailing edge profile.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present disclosure will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present subject matter, the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
The airfoil 37 has a linear trailing edge 46 profile, where a generally straight line connects an upper (radially outward) portion of the trailing edge to a lower (radially inner) portion of the trailing edge. The trailing edge profile is offset with respect to an axial plane, and the trailing edge is canted forward (axially upstream) by about 1.8 degrees (see 202) with respect to the bottom (or radially lower) portion of the trailing edge. For example, the trailing edge 46 does not extend exactly radially outward in an axial plane, but rather is angled axially upstream by about 1.8 degrees. The 1.8 degree value is only one example, and any suitable axial forward cant may be used in the desired application. The trailing edge is also offset in the circumferential direction by about 1.4 degrees (see 204). The circumferential direction is in an axial plane that extends 360 degrees around the rotor. A zero offset would be a radial line, such as radial axis 32. In contrast, the trailing edge is offset from the radial axis 32 by about 1.4 degrees in a direction indicated by arrow 34 in
As can be seen in
A blade design with the axial chord distribution shown in
Technical effects of the disclosed embodiments include improvement to the performance of the turbine in a number of different ways. The blade 36 design and the throat distribution shown in
This written description uses examples to disclose the subject matter, including the best mode, and also to enable any person skilled in the art to practice the subject matter, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5326221 | Amyot | Jul 1994 | A |
6375420 | Tanuma | Apr 2002 | B1 |
6450770 | Wang et al. | Sep 2002 | B1 |
6709239 | Chandraker | Mar 2004 | B2 |
6779973 | Ito | Aug 2004 | B2 |
7048509 | Tominaga | May 2006 | B2 |
8957959 | Stein et al. | Mar 2015 | B2 |
8998577 | Gustafson et al. | Apr 2015 | B2 |
20130104550 | Smith et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
03006798 | Jan 2003 | WO |
Entry |
---|
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/PL2015/050069 on Aug. 18, 2016. |
International Search Report and Written Opinion issued in connection with related PCT Application No. PCT/PL2015/050070 on Aug. 18, 2016. |
Number | Date | Country | |
---|---|---|---|
20170175530 A1 | Jun 2017 | US |