This application is a National Stage of International Application No. PCT/EP2020/064646 filed May 27, 2020, claiming priority based on French Patent Application No. 1905745 filed May 29, 2019, the entire contents of each of which being herein incorporated by reference in their entireties.
The present invention relates to an assembly for a turbomachine.
The invention relates more specifically to an assembly for a turbomachine comprising a damper.
A turbomachine known from the state of the art comprises a casing and a fan capable of being rotated relative to the casing, around a longitudinal axis, by means of a fan shaft.
The fan comprises a disk centered on the longitudinal axis, and a plurality of blades distributed circumferentially at the outer part of the disk.
The range of operation of the fan is limited. More specifically, the evolution of a compression rate of the fan as a function of an air flow rate it draws when rotated, is restricted to a predetermined range.
Beyond this range, the fan is indeed subjected to aeroelastic phenomena which destabilize it.
More specifically, the air circulating through the running fan supplies energy to the blades, and the blades respond in their eigenmodes at levels that may exceed the endurance limit of the material constituting them. This fluid-structure coupling therefore generates vibrational instabilities which accelerate the wear of the fan and reduce its service life.
A fan which comprises a reduced number of blades, and which is subjected to high aerodynamic loads, is very sensitive to this type of phenomena.
This is the reason why it is necessary to guarantee a sufficient margin between the stable operating range and the areas of instability, so as to spare the endurance limits of the fan.
To do so, it is known practice to equip the fan with dampers. Examples of dampers have been described in documents FR 2 949 142, EP 1 985 810 and FR 2 923 557, in the name of the Applicant. These dampers are all configured to be housed between the platform and the root of each blade, within the housing delimited by the respective stilts of two successive blades. Furthermore, such dampers operate during a relative movement between two successive blade platforms, by dissipation of the vibration energy, for example by friction.
Consequently, these dampers focus only on damping a first vibratory mode of the blades which characterizes a synchronous response of the blades to the aerodynamic loads. In this first vibratory mode, the inter-blade phase-shift is non-zero.
However, such dampers are totally ineffective for damping a second vibratory mode in which each blade flaps relative to the disk with a zero inter-blade phase-shift. Indeed, in this second vibratory mode, there is no relative movement between two successive blade platforms. This particular response of the blades to the aerodynamic loads, although asynchronous, still involves a non-zero moment on the fan shaft. In addition, this second vibratory mode is coupled between the blades, the disk and the fan shaft. The amplitude of this second vibratory mode is all the more important as the blades are large.
There is therefore a need to overcome at least one of the drawbacks of the state of the art described above.
One aim of the invention is to damp a mode of vibration of a rotor in which the phase-shift between the blades of said rotor is zero.
Another aim of the invention is to influence the damping of modes of vibration of a rotor in which the phase-shift between the blades of said rotor is non-zero.
Another aim of the invention is to propose a damping solution which is simple and easy to implement.
To this end, according to a first aspect of the invention, an assembly for a turbomachine is proposed, comprising:
a casing,
a first rotor:
movable in rotation relative to the casing around a longitudinal axis, and
comprising:
a disk, and
a plurality of blades capable of flapping relative to the disk during a rotation of the first rotor relative to the casing,
a second rotor movable in rotation relative to the casing around the longitudinal axis, and
a damper configured to damp a movement of the first rotor relative to the second rotor, in a plane orthogonal to the longitudinal axis, the movement being caused by a flapping of at least one blade among the plurality of blades, the damper comprising:
a first bearing part:
bearing against the first rotor, and
being configured to apply a first centrifugal force on the first rotor,
a second bearing part:
bearing against the second rotor, and
being configured to apply a second centrifugal force on the second rotor, and
a linking part:
connecting the first bearing part to the second bearing part, and
being thinned relative to the first bearing part and the second bearing part, and
a flyweight fixedly mounted on the damper.
In operation, the first bearing part exerts a first centrifugal force on the first rotor, and the second bearing part exerts a second centrifugal force on the second rotor. Thus, the first bearing part is integral in vibration with the first rotor, and the second bearing part is integral in vibration with the second rotor. Thanks to the linking part, the damper therefore ensures a vibratory coupling between the first rotor and the second rotor. More specifically, the linking part being thinned with respect to the first bearing part and to the second bearing part, it has greater tangential flexibility than the first bearing part and the second bearing part, respectively. In this way, it is possible to damp a movement of the first rotor with respect to the second rotor, in a plane orthogonal to the longitudinal axis. In other words, in such an assembly, the second vibration mode is effectively damped, and the first vibration mode is also capable of being damped. For high movement frequencies, damping is provided by the shear operation of the linking part. For low movement frequencies, damping is provided by friction of either one of the first bearing part or the second bearing part respectively on the first rotor or on the second rotor. Finally, such an assembly has the advantage of easy integration into existing turbomachines, whether during manufacture or during maintenance.
Advantageously, but optionally, the assembly according to the invention may further comprise one of the following characteristics, taken alone or in combination with one or several of the other of the following characteristics:
the first bearing part has a radially outer surface coming into contact with a radially inner surface of the first rotor,
the second bearing part has a radially outer surface coming into contact with a radially inner surface of the second rotor,
the first bearing part is fixedly mounted on the first rotor,
the second bearing part is fixedly mounted on the second rotor,
the first bearing part bears on the first rotor in a first bearing area extending over a first angular sector around the longitudinal axis, the damper further comprising a third bearing part bearing on the first rotor in a third bearing area, different from the first bearing area, the third bearing area extending over a third angular sector around the longitudinal axis, the third angular sector being smaller than first angular sector,
it further comprises a sacrificial plate:
fixedly mounted on the second bearing part, and
bearing against the second rotor,
in such an assembly:
the first bearing part has a first bearing surface arranged to apply a first force on the second rotor, the first force having a first longitudinal component in a first direction parallel to the longitudinal axis, and a first radial component in a second direction orthogonal to the longitudinal axis, the first longitudinal component being greater than the first radial component,
the second bearing part has a second bearing surface arranged to apply a second force on the second rotor, the second force having a second longitudinal component in the first direction, and a second radial component in the second direction, the second radial component being greater than the second longitudinal component,
it further comprises:
a first sacrificial plate fixedly mounted on the first bearing part and having the first bearing surface, and
a second sacrificial plate fixedly mounted on the second bearing part and having the second bearing surface,
a slot is provided in the first bearing part, the assembly further comprising a metal insert inserted into the slot, the second sacrificial plate being fixedly mounted on the metal insert,
the flyweight is fixedly mounted on the first bearing part,
the flyweight is fixedly mounted on the second bearing part,
it further comprises:
a first flyweight fixedly mounted on the first bearing part, and
a second flyweight fixedly mounted on the second bearing part,
each of the blades among the plurality of blades comprises:
a blade root connecting the blade to the disk,
a profiled blading,
a stilt connecting the blading to the blade root, and
a platform connecting the blading to the stilt and extending transversely to the stilt, the first bearing part bearing on the platform of one blade among the plurality of blades, and
the second rotor comprises a shroud, the shroud comprising a circumferential extension, the second bearing part bearing on the circumferential extension.
According to a second aspect of the invention, there is proposed a turbomachine comprising an assembly as described above, and in which the first rotor is a fan and the second rotor is a low-pressure compressor.
Other characteristics, aims and advantages of the invention will emerge from the following description, which is purely illustrative and not limiting, and which should be read in relation to the appended drawings in which:
In all the figures, the similar elements bear identical references.
Turbomachine 1
Referring to
Each of the fan 12, of the low-pressure compressor 140, of the high-pressure compressor 142, of the high-pressure turbine 180 and of the low-pressure turbine 182 is movable in rotation relative to the casing 10 around a longitudinal axis X-X.
In the embodiment illustrated in
In operation, the fan 12 draws in an air stream 110 which separates between a secondary stream 112 circulating around the casing 10, and a primary stream 111 successively compressed within the low-pressure compressor 140 and the high-pressure compressor 142, ignited within the combustion chamber 16, then successively expanded within the high-pressure turbine 180 and the low-pressure turbine 182.
The upstream and the downstream are here defined relative to the direction of normal air flow 110, 111, 112 through the turbomachine 1. Likewise, an axial direction corresponds to the direction of the longitudinal axis X-X, a radial direction is a direction which is perpendicular to this longitudinal axis X-X and which passes through said longitudinal axis X-X, and a circumferential or tangential direction corresponds to the direction of a planar and closed curved line, all the points of which are at equal distance from the longitudinal axis X-X. Finally, and unless otherwise specified, the terms “inner (or internal)” and “outer (or external)”, respectively, are used with reference to a radial direction such that the inner (i.e. radially inner) part or face of an element is closer to the longitudinal axis X-X than the outer (i.e. radially outer) part or face of the same element.
Fan 12 and Low-Pressure Compressor 140
Referring to
Referring to
a blade root 1220 connecting the blade 122 to the disk 120,
a profiled blading 1222,
a stilt 1224 connecting the blading 1222 to the blade root 1220, and
a platform 1226 connecting the blading 1222 to the stilt 1224 and extending transversely to the stilt 1224.
The blade root 1220 may be integral with the disk 120 when the fan 12 is a one-piece bladed disk. Alternatively, as seen in
As seen in
Each of the blades 122 of the plurality of fan 12 blades 122 is capable of flapping, by vibrating relative to the disk 120 during a rotation of the fan 12 relative to the casing 10. More specifically, during the coupling between the air 110 circulating within the fan 12 and the profiled bladings 1222, the blades 122 are the site of aeroelastic floating phenomena on different vibratory modes, and whose amplitude may be such that it exceeds the endurance limits of the materials constituting the fan 12. These vibratory modes are furthermore coupled to the opposite compressive forces upstream of the turbomachine 1, and to the expansion forces downstream of it.
A first vibratory mode characterizes a synchronous response of the blades 122 to the aerodynamic loads, in which the inter-blade phase-shift is non-zero.
A second vibratory mode characterizes an asynchronous response of the blades 122 to the aerodynamic loads, in which the inter-blade phase-shift is zero. The amplitude of the flapping of the second vibratory mode is moreover as large as the fan 12 blades 122 are large.
Furthermore, this second vibratory mode is coupled between the blades 122, the disk 120 and the fan shaft 13. The frequency of the second vibratory mode is in addition one and a half times greater than that of the first vibratory mode. Finally, the second vibratory mode has a nodal deformation at mid-height of the fan 12 blades 122.
In vibratory modes, including the second vibratory mode, the flapping of the blades 122 involves a non-zero moment on the low-pressure shaft 13. In particular, these vibratory modes cause intense torsional forces within the low-pressure shaft 13.
The vibrations induced by the flapping of the blades 122 of the fan 12, but also by the flapping of the blades 1400 of the low-pressure compressor 140, lead to significant relative tangential movements between the fan 12 and the low-pressure compressor 140. Indeed, the length of the blades 122 of the fan 12 is greater than the length of the blades 1400 of the low-pressure compressor 140. Consequently, the tangential bending moment caused by the flapping of a blade 122 of the fan 12 is greater than the tangential bending moment caused by flapping of a blade 1400 of the low-pressure compressor 140. The blading of the blades 122 of the fan 12 and of the blades 1400 of the low-pressure compressor then have very different behaviors. Furthermore, the mounting stiffness within the fan 12 is different from the mounting stiffness within the low-pressure compressor 140.
As seen more specifically in
Damper 2
A damper 2 is used to damp these vibrations of the fan 12 and/or of the low-pressure compressor 140.
The damper 2 is in particular configured to damp a movement of the fan 12 relative to the low-pressure compressor 140, in a plane orthogonal to the longitudinal axis X-X, the movement being caused by a flapping of at least one blade 122 among the plurality of blades122 of the fan 12. Indeed, it is by damping such a movement that it is possible to influence the second vibratory mode. Actually, unlike the first vibratory mode, the second vibratory mode is characterized by a zero inter-blade phase-shift. Consequently, placing a damper between two successive fan blades 122, as has already been proposed in the prior art, has no effect on the second vibratory mode. The damper 2 here influences the second vibratory mode because it acts on an effect of the second vibratory mode: the movement of the fan 12 with respect to the low-pressure compressor 140, in the plane orthogonal to the longitudinal axis X-X, as visible in
Referring to
a first bearing part 21:
bearing on the fan 12, and
being configured to apply a first centrifugal force Cl on the fan 12,
a second bearing part 22:
bearing on the low-pressure compressor 140, and
being configured to apply a second centrifugal force C2 on the low-pressure compressor 140, and
a linking part 20:
connecting the first bearing part 21 to the second bearing part 22, and
being thinned with respect to the first bearing part 21 and to the second bearing part 22.
More specifically, as illustrated in
Thus, the first bearing part 21 and the second bearing part 22 are massive. Consequently, in operation, each of the first bearing part 21 and the second bearing part 22 exerts a respective centrifugal force C1, C2 on the fan 12 and the low-pressure compressor 140, on which bear said bearing parts 21, 22. To apply the first centrifugal force C1, the first bearing part 21 has a radially outer surface contacting a radially inner surface of the fan 12, typically a radially inner surface of the platform 1226. To apply the second centrifugal force C2, the second bearing part 22 has a radially outer surface, contacting a radially inner surface of the low-pressure compressor 140, typically a radially inner surface of the circumferential extension 1404, for example a radially inner surface of the sealing wipers 1406. In this way, the bearing parts 21, 22 are each dynamically coupled respectively to a fan 12 and to the low-pressure compressor 140 on which each bears, so as to undergo the same vibrations as each of the fan 12 and the low-pressure compressor 140. Furthermore, the bearing parts 21, 22 are stiffer than the linking part 20, in particular in a tangential direction. Advantageously, as for example visible in
The thinner linking part 20 is more flexible, in particular in a tangential direction. Therefore, it allows the fan 12 to transmit the vibrations to which it is subject to the low-pressure compressor 140 and, conversely, it allows the low-pressure compressor 140 to transmit the vibrations to which it is subject to the fan 12. Indeed, for high vibration frequencies, damping is provided in particular by the shear operation of the linking part 20, that is to say by viscoelastic dissipation. For low vibration frequencies, damping is in particular ensured by friction of either one of the first bearing part 21 or of the second bearing part 22 respectively against the fan 12 or against the low-pressure compressor 140.
Advantageously, as can be seen in
All or part of the blades 122 of the fan 12 may moreover be equipped with such a damper 2, depending on the desired damping, but also the mounting and/or maintenance characteristics.
In one embodiment, the first bearing part 21 is fixedly mounted on the fan 12, for example by gluing. This facilitates the integration of the damper 2 within the turbomachine 1, and guarantees the bearing of the first bearing part 21 on the fan 12. Alternatively, as for example illustrated in
In one embodiment, the damper 2 comprises a material from the range having the trade name “SMACTANE® ST” and/or “SMACTANE® SP”, for example a material of the type “SMACTANE® ST 70” and/or “SMACTANE® SP 50”. It has indeed been observed that such materials have suitable damping properties.
Referring to
Advantageously, as illustrated in
With reference to
Advantageously, the sacrificial plate 220 may also comprise an additional coating, configured to reduce the friction and/or wear of the low-pressure compressor 140. This additional coating is fixedly mounted on the sacrificial plate 220, for example by gluing. The additional coating is of the dissipative and/or viscoelastic and/or damping type. It may indeed comprise a material from the range having the trade name “SMACTANE® ST” and/or “SMACTANE® SP”, for example a material of the type “SMACTANE® ST 70” and/or “SMACTANE® SP 50”.
It may also comprise a material chosen from those having mechanical properties similar to those of Vespel, Teflon or any other material with lubricating properties. More generally, the additional coating material advantageously has a coefficient of friction between 0.3 and 0.07.
The sacrificial plate 220 is optionally combined by juxtaposition with its additional coating. Indeed, it allows to increase the friction, in particular tangential friction, of the damper 2 when, in operation, the sacrificial plate 220 is sufficiently constrained by the second centrifugal force C2 so that the movement of the fan 12 with respect to the low-pressure compressor 140, in the plane orthogonal to the longitudinal axis X-X, is damped by energy dissipation by means of a viscoelastic shear of the sacrificial plate 220.
Referring to
the first bearing part 21 has a first bearing surface 2100 arranged to apply a first force F1 on the low-pressure compressor 140, the first force F1 having a first longitudinal component F1L in a first direction parallel to the longitudinal axis X-X, and a first radial component F1R in a second direction orthogonal to the longitudinal axis X-X, the first longitudinal component F1L being greater than the first radial component F1R,
the second bearing part 22 has a second bearing surface 2220 arranged to apply a second force F2 on the low-pressure compressor 140, the second force F2 having a second longitudinal component F2L in the first direction, and a second radial component F2R in the second direction, the second radial component F2R being greater than the second longitudinal component F2L.
In other words, the first bearing surface 2100 ensures the axially positioned bearing of the damper 2 since it is a downstream axial surface of the damper 2 coming into contact with an upstream axial surface of the low-pressure compressor 140. Furthermore, the second bearing surface 2220 ensures the radially positioned bearing of the damper 2 since it is a radially outer surface of the damper 2 coming into contact with a radially inner surface of the low-pressure compressor 140. In addition, in operation, the second bearing surface 2220 participates in the application of the second centrifugal force C2 on the low-pressure compressor 140.
Referring to
a first sacrificial plate 210 is fixedly mounted on the first bearing part 21, for example by gluing, and has the first bearing surface 2100, and
a second sacrificial plate 222 is fixedly mounted on the second bearing part 22, for example by gluing, and has the second bearing surface 2220.
The first sacrificial plate 210 and the second sacrificial plate 222 advantageously have the same characteristics as those described with reference to the sacrificial plate 220 of the embodiment illustrated in
Still with reference to
With reference to
Referring to
Advantageously, as can be seen in
In another advantageous variant, with reference to
a first flyweight 31 is fixedly mounted on the first bearing part 21, for example by gluing, and
a second flyweight 32 is fixedly mounted on the second bearing part 22, for example by gluing.
In this way, it is possible to independently adjust the first centrifugal force C1 and the second centrifugal force C2. This improves the damping of vibrations by targeting the vibration modes specific to the fan 12 and specific to the low-pressure compressor 140.
In all that has been described above, the damper 2 is configured to damp a movement of the fan 12 relative to the low-pressure compressor 140, in the plane orthogonal to the longitudinal axis X-X.
This is however not limiting, since the damper 2 is also configured to damp a movement of any first rotor 12 relative to any second rotor 140, in a plane orthogonal to the longitudinal axis X-X, as long as the first rotor 12 is movable in rotation relative to the casing 10 around the longitudinal axis X-X and comprises a disk 120 as well as a plurality of blades 122 capable of flapping by vibrating relative to the disk 120 during a rotation of the first rotor 12 relative to the casing 10, and as the second rotor 140 is also movable in rotation relative to the casing 10 around the longitudinal axis X-X.
Thus, the first rotor 12 may be a first stage of the high-pressure compressor 142 or of the low-pressure compressor 140, and the second rotor 140 may be a second stage of said compressor 140, 142, successive to the first stage of compressor 140, 142, upstream or downstream thereof. Alternatively, the first rotor 12 may be a first stage of a high-pressure turbine 180 or of low-pressure turbine 182, and the second rotor 140 may be a second stage of said turbine 180, 182, successive to the first stage of turbine 180, 182, upstream or downstream thereof.
In any event, the damper 2 has a small space requirement. Consequently, it can be easily integrated into the existing turbomachines.
In addition, by being configured to exert centrifugal forces C1, C2 on the first rotor 12 and on the second rotor 140, the damper 2 ensures significant tangential stiffness between the first rotor 12 and the second rotor 140. It thus differs from an excessively flexible damper which would only deform during a movement of the first rotor 12 relative to the second rotor 140, in the plane orthogonal to the longitudinal axis X-X. On the contrary, the damper 2 dissipates such a movement:
either by friction and/or oscillations between a state where the damper 2 is bonded on the rotors 12, 140 and a state where the damper 2 slides on the rotors 12, 140, which allows damping in particular the low frequencies,
or by viscoelastic shear within the damper 2, which allows damping in particular the high frequencies.
However, the damper 2 remains flexible enough to maximize the contact surfaces between said damper 2 and the rotors 12, 140 on which it bears. To do so, the damper 2 has a tangential rigidity greater than an axial rigidity and a radial rigidity.
The contact forces between the damper 2 and the rotors 12, 140 can in particular be adjusted by means of flyweights 3 and/or sacrificial plates 220, 221, 222 and/or additional coatings on said sacrificial plates 220, 221, 222. At low frequencies, it is indeed necessary to ensure that the centrifugal forces C1, C2 exerted by the damper 2 on the rotors 12, 140 are not too large, in order to guarantee that the damper 2 can oscillate between a bonded state and a slippery state on the rotors 12, 140, and thus damp by friction. At high frequencies, on the other hand, it is necessary to ensure that the centrifugal forces C1, C2 exerted by the damper 2 on the rotors 12, 140 are sufficiently large for the pre-stress of the damper 2 on the rotors 12, 140 to be sufficient, in order to ensure that the damper 2 can be the viscoelastic shear seat.
The wear of the rotors 12, 140 is in particular limited by the treatment of the surfaces of the damper 2 bearing on the rotors 12, 140, for example to equip them with a coating with a low coefficient of friction.
Number | Date | Country | Kind |
---|---|---|---|
1905745 | May 2019 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/064646 | 5/27/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/239804 | 12/3/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4723889 | Charreron | Feb 1988 | A |
8182228 | Riley | May 2012 | B2 |
8911210 | Bilz | Dec 2014 | B2 |
20090010762 | Caucheteux | Jan 2009 | A1 |
20090123286 | Mace | May 2009 | A1 |
20100135774 | Dezouche | Jun 2010 | A1 |
20140356134 | Stoughton et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
204941612 | Jan 2016 | CN |
2 058 526 | May 2009 | EP |
1 985 810 | Jun 2010 | EP |
2 923 557 | May 2009 | FR |
2 949 142 | Feb 2011 | FR |
Entry |
---|
Andre et al. Balancing and Damping system of a Turbomachine Disc, FR, 2716931, Sep. 8, 1995 (Year: 1995). |
Yu et al., A Compressible Damping, CPO, CN 204941612, Jan. 6, 2016 (Year: 2016). |
French Search Report dated Jan. 27, 2020 in French Application No. 1905745. |
International Search Report dated Jun. 24, 2020 in International Application No. PCT/EP2020/064646. |
Written Opinion of the International Searching Authority dated Jun. 24, 2020 in International Application No. PCT/EP2020/064646. |
Number | Date | Country | |
---|---|---|---|
20220228495 A1 | Jul 2022 | US |