The present invention relates to the manufacturing of a turbine engine blade by lost-wax casting, and more specifically a blade comprising an inner cooling cavity.
The mobile blades of a turbine engine turbine, such as a low pressure turbine or a high pressure turbine, each comprise an inner cooling circuit which makes it possible for them to withstand the thermal stress to which the blades are subject when the turbine engine is in operating mode. A flow of cooling air circulates through the inner cooling circuit.
A cooling circuit comprises, for example, at least one inlet opening located in the vicinity of the blade root, at least one inner cavity and at least one outlet opening located in the vicinity of the top of the blade, the flow of air circulating successively through the inlet opening, the cavity and then the outlet opening.
In order to maximise the thermal exchange between the flow of air and the blade, in other words the cooling of the blade, the cavity conventionally comprises disruptors which are, for example, in the form of fins or concave shapes. The disruptors must enable to homogeneously distribute the air flow throughout the entire blade without slowing it down. In this document, a particular interest is paid to small blades that, owing to the size thereof, have small cavities. It has been noted that the geometric and dimensional characteristics selected for the disruptors of large blades are not applicable to small blades.
A blade is, for example, manufactured by lost-wax casting. According to this manufacturing technique, a wax model is moulded in a mould in which is placed a core (also called a foundry core), which is created beforehand. The wax model is then covered, in an alternating manner, by ceramic slip and a refractory powder so as to create a shell. The wax is subsequently chased from the shell and the shell is heated at a high temperature. The molten metal is then poured into the shell, the metal thereby specifically occupying the empty space between the core and the inner face of the shell. After solidification of the metal, the blade is obtained by removing the shell and the core.
The core is, for example, made of a ceramic material with a porous structure. The core is generally obtained in an injection moulding press.
If the cavity of the blade comprises fins, the core has a complex form and comprises, in particular, thin voids that are configured to form fins after the pouring of the molten metal.
The complexity of the core requires the use of a mould (also called a core box) comprising a plurality of sub-parts that are mobile with respect to one another, this architecture preventing undercuts, in other words allowing the proper removal of the mould from the core.
However, such a mould is not compatible with blade geometries, which is the case, for example, for a blade locally presenting, in a transversal plane, a high degree of curvature.
Furthermore, owing to the difficulty of positioning these various sub-parts with respect to one another, it has been noted that the required geometric and dimensional characteristics of the fins are not achievable, in other words the impossibility of this manufacturing method does not enable to obtain the required cooling performance of the blade.
Furthermore, during the core injection process, filling is achieved by mould flow, this filling process being likely to cause the appearance of defects, and more globally, to lead to the scrapping of a significant number of cores.
An alternative could be to create the voids in a subsequent machining step, which would be detrimental to productivity (core machining process taking a long time).
In the case where the inner walls of the cavity comprise concave shapes, the shape of the core is simpler, thus facilitating the manufacturing thereof.
However, the cooling of the blade is not satisfactory. Indeed, the presence of concave shapes generates swirls inside the cavity, these swirls negatively affecting the flow of air. Furthermore, the concave shapes do not enable to distribute the flow of air homogeneously throughout the blade, in other words the flow of air does not sufficiently cool the blade.
The prior art also comprises documents US-A1-2013/280092, EP-A2-0258754, EP-A2-1775420 and EP-A1-1598523.
The purpose of the present invention is to propose a blade with an adequate cooling circuit, while optimising the manufacturing method thereof.
For this purpose, the invention proposes a core configured for the manufacturing of a turbine engine blade by lost-wax casting, the core comprising a first convex curved outer face and a second concave curved outer face, characterised in that the first and second faces comprise a plurality of recesses, each recess comprising a spherical portion,
wherein each said recess is defined at least partially by an axis of symmetry, the axes of symmetry of the spherical portions of the first face being parallel to a first direction,
wherein said first direction is defined, in a transversal plane, by the bisector of the angle formed by the intersection of a first tangent to the first face at the first point of junction between the first face and a first connection between the first and second faces, and a second tangent to the first face at the second point of junction between the first face and a second connection between the first and second faces, the first and second tangents being defined in the transversal plane, and the first and second points of junction being opposite one another.
The structure of the core is simple and thus makes it possible to minimise the number of scrapped cores. This type of core further avoids a filling by mould flow.
The core according to the invention can comprise one or more of the following characteristics, taken individually or in combination:
A second purpose of the invention is to propose a mould configured for the manufacturing of a core such as described above, the mould comprising a first imprint and a second imprint that are mobile with respect to one another and delimiting an injection cavity of the core, the first imprint comprising a first concave curved inner surface configured to form the first face of the core, the second imprint comprising a second convex curved inner surface configured to form the second face of the core, the first and second surfaces comprising a plurality of protrusions configured to form the recesses of the core, each protrusion comprising a spherical part,
wherein each protrusion is at least partially defined by an axis of symmetry, the axes of symmetry of the spherical parts of the first surface being parallel to said first direction of said core, said first direction corresponding to a first mould-release direction.
The structure of the mould is simple in that it has a first imprint and a second imprint that are easy to position with respect to one another. This structure considerably reduces the number of scrapped cores. This cooling circuit is furthermore compatible with various blade geometries, and in particular with blades that have, locally in a transversal plane, a high degree of curvature.
The mould according to the invention can comprise one or more of the following characteristics, taken individually or in combination:
A third purpose of the invention relates to a manufacturing method of a turbine engine blade by lost-wax casting, this method comprising a step wherein a core such as described above is manufactured in a mould such as described above, the method preferably comprising a mould-release step wherein the first imprint is moved along a first mould-release direction and/or the second imprint is moved along a second mould-release direction.
The manufacturing method of the blade is simplified, and in particular that of the core, which increases productivity.
A fourth purpose of the invention relates to a blade obtained by the manufacturing method described above, the blade comprising a cooling cavity delimited by a first concave curved inner wall and by a second convex curved inner wall, the first and second walls each comprising a plurality of bosses, each boss comprising a spherical section.
The cooling cavity enables the homogeneous distribution of the flow of cooling air on the first and second walls without slowing down the blade, in other words, generally, it allows for the efficient cooling of the blade.
The blade according to the invention can comprise one or more of the following characteristics, taken individually or in combination:
The invention will be better understood, and other details, characteristics and advantages of this invention will become clearer upon reading the following description, provided as an example and not limited thereto, and with reference to the appended drawings, wherein:
In
The blade 1 comprises a leading portion with an aerodynamic profile that extends longitudinally along an axis X between a root 2 of the blade 1 and a top 3 of the blade 1.
In this document, the term “longitudinally” or “longitudinal” describes any direction parallel to the axis X, and the term “transversally” or “transversal” describes a direction perpendicular to the axis X.
More specifically, the root 2 of the blade 1 is configured to be mounted on a rotor (not shown) of the turbine. The top 3 of the blade 1 comprises seals 4 arranged opposite an abradable coating mounted on a casing (not shown) of the turbine.
The leading portion with an aerodynamic profile of the blade 1 comprises a leading edge 5 arranged upstream in the direction of flow of the gases through the turbine, a trailing edge 6 opposite the leading edge 5, an upper side face 7, a lower side face 8, these upper and lower faces 7, 8 connecting the leading edge 5 to the trailing edge 6.
More specifically, according to the embodiment shown in
The blade 1 further comprises an inner cooling circuit 9 that enables it to withstand the thermal stress to which it is subject, this cooling circuit 9 comprising at least one cooling cavity 10 that extends longitudinally between the root 2 of the blade 1 and the top 3 of the blade 1, at least one inlet opening 11, and at least one outlet opening 12. A flow of cooling air circulates through the inner cooling circuit 9.
According to the embodiment shown in the figures, and more specifically in
Such as shown by the arrows of
Such as shown in
Advantageously, such as shown in
Each boss 15a, 15b comprises a spherical section 16 and is defined at least partially according to an axis of symmetry B intersecting with the axis of symmetry B1 of the spherical section 16. The axes of symmetry B1 of the spherical sections 16 of the first wall 13 are parallel.
Similarly, the axes of symmetry B1 of the spherical sections 16 of the second wall 14 are parallel.
Some bosses 15a, 15b further comprise a tapered section 17, which is more or less extended depending on the bosses 15a, 15b, of which the axis of symmetry B2 intersects with the axis of symmetry B of the bosses 15a, 15b and therefore with the axis of symmetry B1 of the spherical section 16.
Such as shown in
More specifically, the manufacturing method of the blade 1 comprises the following steps:
The cavity 10 of the cooling circuit 9 has the same geometric and dimensional characteristics as the core 18. The core 18 therefore comprises a first side face 20, a second side face 21, a first connection 22 defining a connection radius of the leading edge and a second connection 23 defining a connection radius of the trailing edge, the first and second faces 20, 21 connecting the first connection 22 and the second connection 23. The first and second faces 20, 21 of the core 18 comprise recesses 24a, 24b configured to form the bosses 15a, 15b of the cavity 10. The first and second faces 20, 21 of the core 18 are respectively configured to form the first wall 13 and the second wall 14 of the cavity 10.
More specifically, such as shown in
Each recess 24a, 24b comprises a spherical portion 25 and is defined at least partially according to an axis of symmetry E intersecting with the axis of symmetry E1 of the spherical portion 25. The axes of symmetry E1 of the spherical portions 25 of the first face 20 are parallel with a first direction D1. Similarly, the axes of symmetry E1 of the spherical portions 25 of the second face 21 are parallel with a second direction D2.
Depending on the selected first and second directions D1, D2 and the dimensional characteristics of the recesses 24a, 24b (radius of the tapered portion 26, depth of the recess 24a, 24b), some recesses 24a, 24b further comprise a tapered portion 26, which is more or less extended depending on the recesses 24a, 24b, of which the axis of symmetry E2 intersects with the axis of symmetry E of the recess 24a, 24b and therefore with the axis of symmetry E1 of the spherical portion 25.
Advantageously, such as shown in
Advantageously, such as shown in
Advantageously, to avoid sharp edges, the recesses 24a, 24b comprise fillets (not shown).
According to the embodiment shown in the figures, the thickness of the core 18 is constant, the first and second directions D1, D2 therefore being parallel to one another. The thickness of the core 18 ranges, for example from 0.2 mm to 1 mm. The maximum depth of the recesses 24a, 24b is for example equal to half the thickness of the core 18.
Generally, the recesses 24a must not come into contact with and/or open onto the recesses 24b, and a minimum material thickness must be provided between the recesses 24a and 24b. All connections between the bosses 15a and 15b are thereby avoided.
The shown example is in no way limiting. Indeed, the core 18 can comprise recesses 24a, 24b throughout the first and second faces 20, 21 or locally on the faces 20, 21.
According to an embodiment (not shown), the core 18 comprises recesses 24a, 24b only on the faces 20, 21 at the level of a second connection 23 (for example, one or more rows of recesses 24a, 24b). In this embodiment, the cooling cavity 10 comprises bosses 15a, 15b only on the walls 13, 14 at the level of the trailing edge 6.
The core 18 is obtained in the mould 19, shown in an open position in
Similarly as for the core 18, each protrusion 38 comprises a spherical part 39 and is defined at least partially according to an axis of symmetry P intersecting with the axis of symmetry P1 of the spherical portion 39. The axes of symmetry P1 of the spherical parts 39 of the first surface 36 are parallel with a first mould-release direction A1 corresponding with a first direction D1 of the core 18. Similarly, the axes of symmetry P1 of the spherical parts 39 of the second surface 37 are parallel with a second mould-release direction A2 corresponding to a second direction D2 of the core 18.
The fact that the first and second directions D1, D2 of the core 18 correspond to the first and second mould-release directions A1, A2 of the mould 19 makes it possible to simplify the structure of the mould 19 and to facilitate the extraction of the core 18 from the mould 19.
Similarly as for the core 18, certain protrusions 38 further comprise a tapered part 40, more or less extended depending on the protrusions 38, of which the axis of symmetry P2 intersects with the axis of symmetry P of the protrusion 38 and therefore with the axis of symmetry P1 of the spherical part 39.
The use of a tapered shape facilitates the extraction of the core 18 from the mould 19. The half-angle at the top of the tapered part 40 of the protrusions 38 is for example of 15°.
According to the embodiment shown in the figures, and in particular in
According to a first embodiment alternative, the second imprint 34 is mobile along the second mould-release direction A2 and the first imprint 33 is fixed.
According to a second embodiment alternative, the first imprint 33 is mobile along the first mould-release direction A1 and the second imprint 34 is mobile along the second mould-release direction A2.
The core 18 is for example made of a ceramic material with a porous structure, this material being obtained from a mixture comprising a refractory filler and an organic fraction forming a binder.
More specifically, the manufacturing method of the core 18 in the mould 19 comprises the following steps:
Number | Date | Country | Kind |
---|---|---|---|
1656042 | Jun 2016 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2017/051438 | 6/7/2017 | WO | 00 |