The present invention concerns a casing, in particular an aircraft turbomachine exhaust casing, and its manufacturing method.
The state of the art comprises in particular documents US-A1-2010/111685, US-A1-2006/000077, US-A1-2015/204212 and US-A1-2011/262277.
In a known manner, a turbomachine exhaust casing comprises an inner hub and an outer annular ferrule extending around the hub and an axis of revolution. The ferrule is configured to define, with the hub, an annular flow path for a gas stream and is rigidly connected to the hub by arms, substantially radial with respect to the abovementioned axis.
An exhaust casing is mounted downstream (by reference to the flow of the gases in the turbomachine) of a turbine and the gas stream which passes through the exhaust casing is therefore the combustion gas stream exiting the turbine.
A turbomachine can comprise other similar casings such as an intermediate casing. An intermediate casing is interposed between a low-pressure compressor and a high-pressure compressor of the turbomachine and is therefore passed through by a low-pressure compressor gas stream and intended to supply the high-pressure compressor.
This type of casing can comprise, at its longitudinal ends, flanges for fixing to other members of the turbomachine. The hub of the casing comprises, for example, at a longitudinal end, a scalloped annular flange comprising solid portions regularly distributed about the axis of revolution and spaced apart from each other by hollow portions. In the case of an exhaust casing, this flange makes it possible to connect the casing to an ejection cone of the turbomachine situated downstream.
In the current art, such a casing is manufactured by assembling several parts. The hub is produced from one single part and the arms and the ferrule, sectored or not, are returned and fixed on the hub.
The present invention proposes especially an improvement in manufacturing this type of casing.
To this end, the invention proposes a casing, in particular an exhaust casing, for a turbomachine, comprising an inner hub with an axis of revolution A and an outer annular ferrule extending around the hub, said ferrule being configured to define, with the hub, an annular flow path for a gas stream and being rigidly connected to the hub by arms, the hub comprising, at a longitudinal end, a scalloped annular flange comprising solid portions regularly distributed about said axis and spaced apart from each other by hollow portions, characterised in that the hub is produced by assembling, by means of welding several angular hub sectors which are arranged circumferentially end to end around said axis, each sector being connected to an adjacent hub sector by a longitudinal weld bead which extends over substantially the entire axial extent of the hub and which is substantially aligned axially with a hollow portion of said flange.
The invention proposes a new way to manufacture a casing, especially an exhaust casing, not by means of an initially one-piece hub, but by means of a sectored hub, i.e. formed by assembling sectors. These hub sectors are welded, preferably by electron beam (EB), given the material thicknesses of the elements to be welded.
By the geometry of the hub, during the assembly phase, the electron beam can be led to pass through several skins simultaneously in the zone of the abovementioned flange. EB welding is thus called “triple-skin”, the beam being able to pass through simultaneously three skins, namely the flange, an annular stiffener of the hub and the ferrule.
EB welding is capable of that, but the passing through of multiple thicknesses requires more power and leads to less stability in the quality of welding obtained.
The design of flanges, such as the abovementioned flange, must take into account several functional and mechanical sizing requirements, which is conveyed by material thicknesses, a number of screws, a number and size of scallops or hollow portions, that conform with cost and weight requirements.
The solution proposed consists of the geometric optimisation of the abovementioned flange to make it possible to facilitate the procedure of welding the hub, especially by limiting the number of skins passed through.
For this, the thickness of the flange can be increased to make it possible, with mechanical iso-capacity, to expand and deepen the scallops. The angular positioning of the scallops is optimised such that each welding zone between two hub sectors is aligned with a scallop. This zone thus becomes a “double-skin” welding zone (or “single-skin” is the electron beam does not need to pass through a stiffener), which makes it possible to best control the welding, especially EB welding.
The casing according to the invention can comprise one or more of the following characteristics, taken by themselves or in combination with each other:
The present invention also concerns a turbomachine comprising at least one casing such as described above.
The present invention also concerns a method for manufacturing a casing, especially an exhaust casing, for a turbomachine, this casing comprising an inner hub and an outer annular ferrule extending around the hub and an axis of revolution A, said ferrule being configured to define, with the hub, an annular flow path for a gas stream and being rigidly connected to the hub by arms, the hub comprising, at a longitudinal end, a scalloped annular flange comprising solid portions regularly distributed about said axis and spaced apart from each other by hollow portions, characterised in that it comprises a step consisting of assembling, by means of welding, several angular hub sectors which are arranged circumferentially end to end around said axis, each hub sector being connected to an adjacent hub sector by a longitudinal weld bead, which extends over substantially the entire axial extent of the hub, and which is substantially aligned axially with a hollow portion of said flange.
Preferably, the welding is done by an electron beam. The hub sectors can be produced by casting, and each comprise a flange sector.
Advantageously, to produce each weld bead, the electron beam is inclined with respect to said axis, for example radially towards the outside from a downstream longitudinal end towards an upstream longitudinal end of the casing, and is moved in a substantially longitudinal plane, passing via said axis and said bead to be produced without passing through the material of said flange.
The hollow portions of the flange can either be pre-drafted before assembling the hub, or machined after assembly. The portion which will thus be re-machined (material drop) can be used as a welding “block”.
This solution makes it possible to improve the feasibility, the stability and the quality of the assembly method and therefore its cost (as less adjustment necessary) and thus makes it possible for the overall integrated, optimised design of the flange to the hub.
The invention will be best understood, and other details, characteristics and advantages of the invention will appear more clearly, upon reading the following description, made as a non-limiting example and in reference to the appended drawings, wherein:
Conventionally, a turbomachine comprises a gas generator comprising, from upstream to downstream, in the flow direction of the gas streams, at least one compressor, a combustion chamber, and at least one turbine. Downstream of the turbine 12, is situated the exhaust casing 10 which mainly comprises an inner hub 14 and an outer annular ferrule 16 which extends around the hub and an axis of revolution A which is the longitudinal axis of the turbomachine. In the present application, the expressions “radial” and “radially” make reference to the axis of revolution of the hub or of the casing.
The ferrule 16 and the hub 14 together define an annular flow path 18 for the combustion gases exiting the turbine 12.
The ferrule 16 and the hub 14 are rigidly connected to each other by arms 20, substantially radial with respect to the axis A. The arms 20 can be inclined with respect to the planes passing via the axis A. Advantageously, the arms 20 extend into the planes, substantially tangent to a circumference centred on the axis A, as can be seen in
The casing 10 comprises flanges 22 for fixing to other elements of the turbomachine. These mounting flanges 22 are situated at the upstream and downstream longitudinal ends of the casing. In the example represented, the ferrule 16 comprises an annular flange 22a, 22b at each of its upstream and downstream longitudinal ends. The upstream flange 22a is fixed to a downstream end of a casing of the turbine 12 and the downstream flange 22b is fixed to an upstream end of an exhaust nozzle 24.
The hub 14 comprises, at the downstream longitudinal end, an annular flange 22c for fixing to an upstream end of an exhaust cone 26 surrounded by the nozzle 24.
The flange 22c is scalloped, i.e. it comprises solid portions regularly distributed about the axis A and spaced apart from each other by hollow portions.
In the prior art, the casing 10 is manufactured by returning and by fixing the ferrule 16 and the arms 18 on a hub 14 which is one-piece and produced from one single part, generally by casting.
In the case of an EB welding, and such as represented in
To produce each weld bead, the electron beam is inclined with respect to the axis A, for example radially towards the outside from a downstream longitudinal end towards an upstream longitudinal end of the casing, and is moved in a substantially longitudinal plane passing via the axis and the bead to be produced, and which corresponds to the plane of the drawing sheet of
The reference 34 to
As mentioned in the above, EB welding is capable of passing through several skins, but this requires more power and leads to less stability in the quality of the welding obtained.
The invention makes it possible to overcome this problem, thanks to the axial alignment of the weld bead 30 between two hub sectors 14′ with a hollow portions 22c2 of the scalloped flange 22c.
It is observed, in these figures, that the radially inner portion 20a of each arm 20 is substantially situated between a first longitudinal plane P1 passing via the axis A and one of the solid portions 22c1 of the flange, and a second longitudinal plane P2 passing via the axis A and another adjacent portion of these solid portions. The solid portions 22c1 are situated halfway from the portion 20a of the arm. In other words, the solid portions are placed symmetrically on either side of this portion of the arm.
Each arm 20 comprises an upper surface 36 and a lower surface 37. Each weld bead 30 extends between the upper surface of a first arm and the lower surface of a second adjacent arm, and is situated closer to the lower surface of the second arm than the upper surface of the first arm in the example represented.
The hollow portions 22c2 of the flange 22c each comprise a median edge 38, substantially straight-lined and tangent to a circumference C1 centred on the axis A. The solid portions 22c1 also each comprise a median edge, substantially straight-lined and tangent to a circumference C2 centred on the axis A. These solid portions 22c1 are furthermore pierced with orifices 40 for passing of screw-nut type means.
Number | Date | Country | Kind |
---|---|---|---|
1654734 | May 2016 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2017/051167 | 5/15/2017 | WO | 00 |