1. Field of the Invention
The present invention relates to a turbomachine frame member for rotatably supporting a turbomachine shaft. More particularly, the present invention relates to a turbomachine frame member that includes an inner annular hub, an outer casing, and a plurality of struts that extend between the hub and the casing, wherein the struts are bolted to the outer casing to provide a lighter, yet sufficiently rigid frame structure.
2. Description of the Related Art
Turbomachines, such as gas turbine engines having rotatable shafts that carry compressors and turbines, or fans and turbines, have their shafts supported in bearings that are housed in support frames. The support frames include inner annular hubs in which the bearings are positioned and outer annular casings that define the outer surface of the engine. The hubs and casings are concentric and are spaced from each other in a radial direction to define an annular flow passageway.
Between the inner hub and the outer casing are a plurality of substantially radially-extending, circumferentially-spaced members that interconnect the hub and the casing. When securely connected together, the components provide a rigid supporting frame for rotatably supporting a drive shaft and also for defining the annular flow passageway. The radial members have exterior surfaces that are generally airfoil-shaped in cross section, with the chords of the airfoil shapes extending in a generally axial direction of the support frame to minimize flow interference.
When utilized in relatively cool sections of a gas turbine engine, such as in the compressor section, the support frames can be cast as an integral structure, or they can be fabricated from cast or sheet metal components that are welded or otherwise joined together to provide a rigid frame. However, in hotter sections of a gas turbine engine, such as downstream of the combustor, in which the frames support a turbine drive shaft, cooling air is generally provided to the interior of the radial members to minimize thermal expansion. The radial members in turbine section frames are often defined by elongated structural struts that are bolted to one or both of the inner hub and the outer casing, and that have through-passageways to allow the flow of cooling air around or through the struts. When such structural struts are utilized, airfoil-shaped outer enclosures or fairings can be provided around the structural struts for aerodynamic efficiency.
When structural struts are bolted either to the outer casing or to the inner hub, or to both in some turbine frame structures, the strut ends can be bolted to a clevis arrangement. The clevis arrangement can be secured to the outer casing or to the inner hub by bolts or by welding. In such bolted-frame structures it is not unusual to bolt a clevis to the inner hub or to the outer casing with four connecting bolts, and the strut end can be bolted to the clevis with two additional connecting bolts for rigidity of the strut-to-clevis connection. Other structural arrangements, in which the strut includes an end cap that is bolted to the strut end and in which the end cap is, in turn, bolted to the inner hub or to the outer casing, can involve the use of as many as eight connecting bolts. The use of a large number of connecting bolts to assemble the components of a turbomachine frame member increases frame assembly and disassembly time, and it also adds considerable weight to the overall frame structure. There is thus a need for a turbomachine support frame structure that provides the necessary strength and rigidity in the operating environment to which the frame is subjected, while minimizing the overall weight of the frame structure.
Briefly stated, in accordance with one aspect of the present invention, a turbomachine frame member is provided that includes an annular inner hub for receiving and supporting an anti-friction bearing for rotatably supporting a shaft. An annular outer casing of conical form surrounds and is spaced radially outwardly from the inner hub to define an annular flow passageway therebetween, wherein the outer casing is of conical form. A plurality of substantially radially-extending, circumferentially-spaced struts are positioned between and interconnecting the inner hub and the outer casing to provide a substantially rigid turbomachine frame. The struts have an outer end surface and are connected with the outer casing by a plurality of connecting bolts that extend inwardly through the outer casing and into bolt-receiving openings formed in the struts. Barrel nuts are carried within the strut for cooperative engagement with the respective connecting bolts to enable a tight interconnection to be made between the radially outer end of the strut and the inner surface of the outer casing.
The structure, operation, and advantages of the present invention will become further apparent upon consideration of the following description, taken in conjunction with the accompanying drawings in which:
Referring to the drawings, and particularly to
As used herein, the term “axial” refers to a direction that is parallel, or substantially parallel, to the longitudinal axis of the engine and to the central axis of the frame member. Similarly, the term “radial” refers to a direction that is substantially radial relative to the engine longitudinal axis, and the term “tangential” refers to a direction that is substantially transversely oriented relative to the engine longitudinal axis.
An embodiment of an improved turbomachine frame structure that minimizes the number of connecting bolts needed to interconnect the several elements of the structure is shown in
Strut 38, which is shown in cross section in
Adjacent the radially outermost end of strut 38 is a pair of axially-spaced, transversely-extending throughbores 48, each of which is spaced inwardly of the radially outermost surface of strut 38. A pair of bores 50 extend inwardly from strut end surface 46 to communicate with respective ones of throughbores 48. The connection of strut 38 to outer casing 44 is effected by connecting bolts 52 that pass through respective bolt openings formed in outer casing 44. Bolts 52 extend through bores 50 and into respective throughbores 48. The bolt openings in the outer casing are aligned with bores 50 at the upper end of strut 38, so that the shanks of connecting bolts 52 extend through the outer casing bolt openings and into throughbores 48.
As best seen in
As shown in
Mounted on the outer surface of outer casing 44 is a cooling air manifold 68 that is in communication with a source of cooling air, such as from an upstream compressor stage. As best seen in
Although only a single strut has been described, it will be apparent to those skilled in the art that several such struts are circumferentially positioned to provide a complete frame structure having the overall structure shown in quarter-section in FIG. 1.
The frame structure as illustrated and described allows the formation of a strong, rigid frame from separate components. It also provides a frame structure having a minimum of connecting bolts, for lighter overall frame weight, as compared with previous designs. Additionally, because the outer casing is inclined relative to the engine longitudinal axis, as is the radially outer surface of the support strut, the bolted connection of the strut to the outer casing can be made to be a zero-tolerance interconnection. In that regard, when the bolts connecting the radially outer surface of the strut with the inner surface of the outer casing are tightened, the bolts draw the end of the strut tightly against the outer casing. If the outer casing was of a cylindrical form, not inclined relative to the engine longitudinal axis, obtaining a tight, zero-tolerance interconnection at the outer casing is more difficult because of manufacturing tolerances in the radial direction, which can result in components that do not precisely mate to provide a zero-tolerance interconnection.
Although particular embodiments of the present invention have been illustrated and described, it would be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit of the present invention. It is therefore intended to encompass within the appended claims all such changes and modifications that fall within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5180282 | Lenhart et al. | Jan 1993 | A |
5272869 | Dawson et al. | Dec 1993 | A |
5292227 | Czachor et al. | Mar 1994 | A |
5438756 | Halchak et al. | Aug 1995 | A |
5483792 | Czachor et al. | Jan 1996 | A |
6358001 | Bosel et al. | Mar 2002 | B1 |
6439841 | Bosel | Aug 2002 | B1 |
6672833 | MacLean et al. | Jan 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040240987 A1 | Dec 2004 | US |