The subject matter disclosed herein relates to the art of turbomachines and, more particularly, to a ceramic matrix composite (CMC) bridge that joins a transition piece with a turbine section of a turbomachine.
In general, gas turbomachine engines combust a fuel/air mixture that releases heat energy to form a high temperature gas stream. The high temperature gas stream is channeled to a turbine section via a hot gas path. The turbine section converts thermal energy from the high temperature gas stream to mechanical energy that rotates a turbine shaft. The turbine section may be employed in a variety of applications, such as for providing power to a pump or an electrical generator.
Many gas turbomachines include an annular combustor within which are formed combustion gases that create the high temperature gas stream. Other turbomachines employ a plurality of combustors arranged in a can-annular array. In such a turbomachine, the hot gas path includes a transition piece that links a group of combustors with a first stage of the turbine section. The combustion gases formed in the group of combustors are delivered to the turbine section through the transition piece.
According to one aspect of the invention, a turbomachine includes a turbine section including a turbine inlet. A transition piece includes a transition piece inlet and a transition piece outlet. A ceramic matrix composite (CMC) bridge member links the transition piece outlet and the turbine inlet.
According to another aspect of the invention, a method of delivering combustion gases from a turbomachine combustor to a turbine section of a turbomachine includes producing combustion gases in the turbomachine combustor, directing the combustion gases into a transition piece, guiding the combustion gases along a ceramic matrix composite (CMC) bridge member linking the transition piece and the turbine section, and passing the combustion gases from the CMC bridge member into the turbine section.
According to yet another aspect of the invention, a turbomachine component includes a ceramic matrix composite (CMC) bridge member configured and disposed to link a transition piece and a turbine section of a turbomachine.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
The terms “axial” and “axially” as used in this application refer to directions and orientations extending substantially parallel to a center longitudinal axis of a turbomachine. The terms “radial” and “radially” as used in this application refer to directions and orientations extending substantially orthogonally to the center longitudinal axis of the turbomachine. The terms “upstream” and “downstream” as used in this application refer to directions and orientations relative to an axial flow direction with respect to the center longitudinal axis of the turbomachine.
With reference to
In accordance with an exemplary embodiment, turbomachine 2 includes a ceramic composite material (CMC) bridge 47 that links transition piece outlet 31 with turbine section inlet 12. In accordance with one aspect of the exemplary embodiment, CMC bridge 47 is formed from one or more of silicon carbide-silicon carbide (SiC—SiC) composites, oxide-oxide composites, and silicon nitride composites. Of course it should be understood that various other CMC materials may also be employed. CMC bridge 47 includes a first CMC bridge member 54 arranged at an outer interface between transition piece outlet 31 and turbine section inlet 12, and a second CMC bridge member 55 arranged at an inner interface between transition piece outlet 31 and turbine section inlet 12. First CMC bridge member 54 includes a main body 56 having an outer surface 57 and an inner surface 58. Likewise, second CMC bridge member 55 includes a main body 59 having an outer surface 60 and an inner surface 61.
First CMC bridge member 54 includes a flow guide 64 arranged on inner surface 58. Flow guide 64 directs combustion gases 18 away from end wall 14. Similarly, second CMC bridge member 55 includes a flow guide 66 arranged on inner surface 61. Flow guide 66 directs combustion gases 18 away from end wall 14 and/or disrupts crossflow vortex generation. With this arrangement, end wall 14 is protected from damage that may result from exposure to combustion gases 18. More specifically, combustion gases passing into an inlet portion 68 of CMC bridge member 54 pass over flow guide 64. Flow guide 64 directs combustion gases 18 through an outlet portion 69 of CMC bridge member 54 at trajectory that is angled away from end wall 14. Likewise, combustion gases passing into an inlet portion 71 of CMC bridge member 55 pass over flow guide 66. Flow guide 66 directs combustion gases 18 through an outlet portion 72 of CMC bridge member 55 at trajectory that is angled away from end wall 14.
As best shown in
Reference will now be made to
Reference will now be made to
Reference will now be made to
At this point it should be understood that the CMC bridge in accordance with exemplary embodiments provides a seal between the transition piece/turbine section interface in order to limit and/or prevent compressor discharge air from entering into the turbine inlet. The transition piece/turbine section interface is typically exposed to high temperatures and thus requires cooling in order to prolong component life. In contrast, the present invention provides a bridge formed from CMC materials that are able to withstand higher temperatures without degrading. By employing the CMC bridge in accordance with the exemplary embodiments the need for cooling airflow at the transition piece/turbine section interface is significantly reduced thereby enhancing turbomachine efficiency. The reduced cooling flow provides additional flow that can be used to extract work from the turbine.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.