1. Field of the Invention
Embodiments of the invention relate to methods for assembling turbomachine blades on a turbomachine rotor, in particular blades for an axial turbomachine, such as a gas turbine, an axial compressor, or a steam turbine. The disclosed subject matter also relates to a turbomachine rotor.
2. Description of the Related Art
A turbomachine drum rotor usually comprises a drum with a blade-retaining groove circumferentially developing around the drum and having a generally T-shaped cross section. The blades comprise each an airfoil portion and a root portion, which is generally T-shaped and intended for retention in the blade-retaining groove of the rotor.
The blades are constrained to the rotor by introducing the root portion in the blade-retaining groove and thereafter twisting the blade about a radial axis, to engage the root portion in the undercut formed by the T-shaped blade-retaining groove.
The number of blades must be sufficient to form a complete annular blade arrangement and are tangentially forced one against the other to resist pressure and vibrations. Several solutions have been developed to introduce the blades in the T-shaped groove and finally force them tangentially one against the other.
In some known turbine rotor arrangements, in order to assemble a complete ring of blades around the rotor, the last blade to be introduced has a root portion which is not T-shaped and which is introduced in an insert space which has, with respect to the width of the T-shaped blade-retaining groove, a larger dimension in the axial direction, i.e. in a direction parallel to the axis of rotation of the rotor. The last blade is retained by locking it with two insertion pieces introduced in the insert space, with the aid of radial screws. When the last blade is introduced and locked, a complete blade ring is formed and the blades are tangentially forced one against the other. U.S. Pat. No. 7,901,187 discloses this kind of construction.
This known mounting system has some drawbacks, including a reduced efficiency in the retention of the last blade 105. The latter is radially retained against the centrifugal forces, which are generated during rotation of the rotor, by means of the screws 109, 111. In order to obtain a sufficient radial retention effect, the screws must deeply engage into the rotor. This results in stress concentration, especially in turbomachines subject to high operating temperatures, such as those arising in steam turbines.
U.S. Pat. No. 7,168,919 describes a further known arrangement for mounting and tangentially locking the blades on a rotor drum. In this known arrangement, each blade has a root with opposite raised portions extending in the axial direction of the root. The blades are introduced in the T-shaped groove in a radially staggered arrangement, so that the respective raised portions are initially radially staggered. Finally the blades are displaced radially outwardly so that the raised portions of all the blades are in radial alignment thus eliminating the clearance between adjacent blades and forcing the blades one against the other in the tangential direction. Machining of the blades is very complex and in the assembling process it is very difficult to control and adjust the final tangential interference.
In other known arrangements, shims are forcedly introduced between roots of adjacent blades, to generate tangential interference between the blades and force them one against the other in tangential direction. The shims are locked by means of screws. Also this arrangement proved not to be satisfactory since it requires critical machining at assembly. In addition the shims must be thick to be forcedly introduced and to host the retaining screws. This requires blades of uneven root pitch, so that the blade row cannot be optimized from the point of view of stress resistance.
There is therefore a need for a more efficient system of mounting the blades on a turbomachine rotor and especially a more efficient way of inserting the last blade and closing the whole blade ring.
According to the subject matter disclosed herein, in an embodiment, the rotating blades of a single turbomachine stage are assembled on the rotor by means of root portions engaging in an undercut blade-retaining groove or channel, which extends circumferentially around the rotor axis. The blade-retaining groove and the blade root portions are shaped so as to radially engage each blade to the rotor. The blade-retaining groove is provided with an undercut, for example a portion of the cross section thereof is T-shaped to form a dovetail connection, wherein a similarly T-shaped or dovetail shaped part of the root portion of each blade engages. The blade retaining groove has an enlarged portion. The blades introduced along the enlarged groove portion can be over-twisted with respect to their final assembled angular position, so as to temporarily take a position of minimum tangential dimension, generating a free gap. The last blade is introduced in the gap and twisted to engage in the undercut formed by the blade-retaining groove. Tangential inserts are finally introduced in the enlarged groove portion to force the over-twisted blades back in the final angular position by rotating each blade around the respective radial axis thereof. In back-twisting the blades in the final angular position, the tangential dimension thereof is increased and clearances between adjacent blades are eliminated. A full ring of blades is obtained. The blades are radially retained in the blade-retaining groove in an efficient manner, without the need for a complex shaping of the blade root portions and without making use of critical blade-rotor constraining means involving radial screws and similar locking members.
According to some embodiments, a turbomachine assembly is therefore provided, comprising a rotor and a ring of blades mounted on the rotor, each blade comprising an airfoil portion and a root portion inserted in an undercut blade-retaining groove of the rotor. The blade-retaining groove extends circumferentially around the rotation axis of the rotor on the outer periphery of a rotor core or rotor drum. The blade-retaining groove comprises an enlarged groove portion, extending along a fraction of the circumferential development of the groove, e.g. from about 20° to about 100°, more particularly from about 30° to about 60°. The enlarged groove portion has a part of the cross section thereof which has a dimension in the axial direction (i.e. parallel to the rotation axis of the rotor) which is larger than the remaining portion of the groove. The blades in the enlarged groove portion are rotatable around a generally radial axis, to take a position of minimum tangential dimension. A plurality of removable inserts are arranged along the enlarged groove portion, between the blade root portions and a side of the groove, to force and lock the blades in a final assembled position. In the position the blades can be in a condition of mutual interference.
An undercut blade-retaining groove in the context of the present disclosure shall be understood as a groove having a cross sectional shape suitable for radially engaging the root portions of the blades, e.g. a T-shaped or dovetail shaped cross-section.
In some embodiments, each blade can be provided with an outer shroud portion. Once assembled in the final position, the shroud portions of adjacent blades are in reciprocal contact so as to form a continuous annular shroud surrounding the blades forming the blade ring around the rotor axis.
According to a further aspect, the subject matter disclosed herein concerns a method of assembling a turbomachine assembly as described above, comprising the steps of: inserting and twisting a first set of blades into engagement of their roots in the blade-retaining groove; inserting a second set of blades in the enlarged portion of the blade-retaining groove and over-twisting the second set of blades around respective radial axes thereof, so that the blades of the second set of blades takes an angular position of reduced tangential dimension, thus creating a free gap in the blade-retaining grove; introducing a last blade in the free gap and over-twisting the last blade around a respective radial axis; sequentially introducing the removable inserts in the enlarged groove portion, between the roots of the second set of blades and an opposing side surface of the enlarged groove portion, thereby sequentially twisting the blades of the second set of blades in a final angular position.
According to yet a further aspect, the subject matter disclosed herein concerns a method of disassembling a turbomachine assembly as described above, comprising the steps of: removing the removable inserts from the enlarged groove portion; over-twisting the blades in the enlarged groove portion, thus creating a gap; twisting one of the blades arranged along the enlarged groove portion, thus disengaging the root portion thereof from the blade-retaining groove and radially removing the twisted blade; removing the remaining blades from the blade-retaining groove.
Features and embodiments are disclosed here below and are further set forth in the appended claims, which form an integral part of the embodiments of the present description. The above brief description sets forth features of the various embodiments of the present invention in order that the detailed description that follows may be better understood and in order that the present contributions to the art may be better appreciated. There are, of course, other features of the invention that will be described hereinafter and which will be set forth in the appended claims. In this respect, before explaining several embodiments of the invention in details, it is understood that the various embodiments of the invention are not limited in their application to the details of the construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which the disclosure is based, may readily be utilized as a basis for designing other structures, methods, and/or systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
A more complete appreciation of the disclosed embodiments of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The following detailed description of the exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. Additionally, the drawings are not necessarily drawn to scale. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims.
Reference throughout the specification to “one embodiment” or “an embodiment” or “some embodiments” means that the particular feature, structure or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrase “in one embodiment” or “in an embodiment” or “in some embodiments” in various places throughout the specification is not necessarily referring to the same embodiment(s). Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
In the following description and enclosed drawings reference will be made to a single disk of a turbine rotor, around which a ring of blades is mounted. It shall be understood that a plurality of such disks or a drum with a plurality of rings of blades can be provided, depending upon the number of stages of the turbomachine. In general, a turbomachine will as a matter of fact include a plurality of stages, each stage comprising a ring of rotating blades mounted on the rotor and a ring of stationary blades mounted on a stationary portion of the machine. The blades of some or all the stages can be mounted on the rotor as described here below.
Moreover, reference will be specifically made to a turbine and in particular to a steam turbine, by way of example. It shall however be understood that the same mounting technique can be used for assembling the blades in different kinds of turbomachines, e.g. in axial compressors or gas turbines.
In the drawings a rotor 1 is comprised of a central drum 3 around which a plurality of blades 7A, 7B are arranged in a ring configuration. In the drawings only a “slice” of the rotor 1 is shown, which corresponds to one of the turbine stages. It shall be understood that in actual fact the rotor has an axial extension depending to the number of stages and that for each stage a ring of blades is mounted on the rotor drum along a corresponding blade-retaining groove.
The rotor 1 has a rotation axis X-X and for each stage of the turbomachine an undercut blade-retaining groove 5 developing circumferentially around the rotor 1. The blade-retaining groove 5 is shaped such as to retain the blades 7A, 7B mounted thereon by means of a dovetail or T-shaped cross section of the blade retaining groove 5 and a correspondingly shaped root portion of the blades 7A, 7B. Generally speaking the cross sectional shape of the blade-retaining groove 5 and the corresponding shape of the blade root portions are such that the blades can be constrained to the rotor by engaging the root portions of the blades in an undercut formed by the blade-retention groove 5.
In some embodiments (see
The cross-section of the blade-retaining groove 5 shown in
The cross section of the enlarged groove portion substantially corresponds to the cross section of the blade-retaining groove 5 along the portion corresponding to angle α, except for a different shape of the inlet slot or platform slot 5A. Along the enlarged groove portion the inlet slot 5A is formed between side wall 5E and an opposing, slanted side wall 5F′. This latter wall is inclined and radially outwardly converging towards the opposing side wall 5E. In some embodiments the slanted side wall 5F′ can be substantially conical, the axis of the conical surface thereof being coincident with the rotation axis X-X of the rotor 1. The side wall 5F′ can also have a shape different than the one shown in the drawings. In general, the side wall 5F′ is shaped so as to form an undercut for the purposes which will become apparent from the following description.
The width of the inlet slot 5A along the enlarged groove portion is thus variable from a minimum dimension D5 to a maximum dimension D4. D5 is larger than D1. In other embodiments the width of the inlet slot 5A along the enlarged groove portion can vary stepwise, increasing in a radially inwardly direction, so as to form an undercut.
For the reasons which will become apparent from the following description, each ring of blades mounted in one of the blade-retaining grooves 5 of the rotor 1 is comprised of two types of blades, forming a first set of blades 7A and a second set of blades 7B, which slightly differ from one another.
The platform 11 extends sideways above the indentations 15 forming two opposing ledges 19. When the blade 7A is in its final assembled position on the rotor 1 the ledges 19 coact with the side walls 5E, 5F defining the inlet slot 5A of the blade-retaining groove 5.
Each ring of blades of a turbomachine stage is formed by a larger number of blades 7A and a smaller number of blades 7B. The blades 7A are arranged around the major portion of the blade retaining-groove 5, along angle α, while the blades 7B of the second set of blades are located in the enlarged groove portion extending from point 5X to point 5Y along angle β of the rotor.
The procedure for mounting each blade 7A of the first plurality or set of blades in the blade-retaining groove 5 will now be described reference being made to
This procedure is repeated for a number of blades 7A sufficient to fill the entire blade-retaining groove 5 except the enlarged groove portion, i.e. until a partial blade ring extending along an angle α is formed, as shown in
The blade root 7R can be suitably chamfered or rounded in a manner known to those skilled in the art, to reduce the dimension D2 of the blade-retaining groove 5 and to increase the number of blades 7A forming each blade ring, i.e. to increase the angle α.
Once a number of blades 7A sufficient to fill the blade-retaining groove 5 along the angle α have been mounted on the rotor 1, the blades 7B of the second set of blades are mounted along the remaining enlarged groove portion in quite the same manner.
As mentioned above, the inlet slot 5A of the blade-retaining groove 5 along the enlarged groove portion is wider that the inlet slot 5A of the remaining major portions of the blade-retaining groove 5, so that the blades 7B of the second set of blades can be over-twisted once introduced with their root portion 7R in the blade-retaining groove 5, as shown in
In the over-twisted position (
In the free gap G which is thus formed a last blade 7BX can be introduced and twisted so as to engage the root portion 7R thereof in the blade-retaining groove 5. See
In order to close the tangential gap G and eliminate any clearance between the blades 7A, 7B and lock the blades thus mounted in the enlarged groove portion in their final correct angular position, each blade 7B arranged along the enlarged groove portion, i.e. along the groove portion corresponding to angle β, may be twisted back from the over-twisted angular position (
To move each over-twisted blade 7B, 7B1, 7BX back to the final angular position, tangential inserts 21 are introduced in a seat 20 formed along the enlarged groove portion between the side wall or side surface 5F′ and the slanted surface 19X of the ledge 19 facing the side wall 5F′.
In the embodiment illustrated in the drawings, a number of inserts 21 identical to the number of blades 7B, 7B1, 7BX arranged along the enlarged groove portion are introduced in the seat 20. This, however, is not mandatory. A different number of inserts 21 can be used. In some embodiments, more inserts 21 than blades 7B along angle β can be used. Vice-versa, a number of inserts 21 smaller than the number of the blades 7B of the second set can be provided in the seat 20. In some embodiments a single insert 21 can be introduced in the tangential seat formed between blades 7B and the side surface 5F′ of the blade-retaining groove 5.
The cross sectional shape and dimension of each insert 21 and of the seat 20 are such that the inserts 21 engage in the seat 20 pushing the respective blades 7B in the final angular position rotating them around their radial axes Y-Y. Each insert 21 can be provided with opposing slanted side surfaces 21A and 21B as shown in
The wedge-shaped cross section of the inserts 21 and the corresponding slanted shape of the surfaces or walls 19X and 5F′ generate a radial retention effect, preventing the inserts 21 from moving away from the seat 20 under the effect of the centrifugal force during operation of the turbomachine. As noted above, the wall 5F′ can be shaped differently, provided it forms an undercut to radially retain the inserts 21.
In some embodiments, at one end (5Y in the example) of the enlarged groove portion flared guide surfaces can be provided, to facilitate the tangential insertion of the inserts 21 between the slanted side surface or wall 5F′ and the slanted surfaces 19X of the ledges 19.
In some embodiments the last introduced insert 21, located at the inlet end of the enlarged groove portion (position 5Y) can be constrained to the rotor 1. For example the last insert 21 (labeled 21X in
In the embodiment disclosed so far the inserts 21 are introduced in the seat 20 with a substantially tangential movement, with the aid of the flared guide and slide surfaces 27, 29. In some embodiments, not shown, insertion can be through a radial slot machined in the rotor drum 3 and reaching a depth substantially corresponding to the bottom of the seat 20. Once an insert 21 has been introduced radially in the slot, it can be shifted with a tangential movement into seat 20.
Rotation of the blades 7B arranged along the enlarged groove portion between point 5X and point 5Y, in the final angular position (
The inserts 21 thus lock the entire ring of blades 7A, 7B in the final position. The back twisting of the blades 7A, 7B along the enlarged groove portion (angle β) from the over-twisted position to the final assembled position, caused by the introduction of the inserts 21, removes the clearance between blades.
Disassembling of the blades, for example for maintenance or repairing purposes, is obtained by a reversed sequence of operations. Firstly, the last introduced insert 21X is removed. If a constraining member, such as a screw, is provided, which locks tangentially the insert 21 to the rotor drum 3, the constraining member is removed. Afterwards the inserts 21X, 21 are sequentially removed from the seat 20 by tangentially sliding them out of the seat 20 along the blade-retaining groove 5. The blades 7BX, 7B1, 7B arranged along the enlarged groove portion between point 5X and point 5Y are over-twisted in their position of minimum tangential dimension, thus creating a free gap G, where the blade 7BX can be twisted about the radial axis Y-Y thereof by approximately 90° until the surfaces 13 of the blade root 7R are positioned approximately orthogonal to the rotation axis X-X of the rotor 1. Once this angular position has been achieved, the T-shaped part of the root portion 7R of blade 7BX can be disengaged from the undercut 5D formed in the bottom portion 5C of the blade-retaining groove 5. The blade 7BX can thus be radially removed. The remaining blades 7B, 7A can now be individually rotated about approx. 90° and radially extracted from the blade-retaining groove 5 by disengaging the respective T-shaped section of each blade from the undercut 5D.
Removal of the inserts 21 can be facilitated by providing a notch or the like on each inert 21X, 21. In
While the disclosed embodiments of the subject matter described herein have been shown in the drawings and fully described above with particularity and detail in connection with several exemplary embodiments, it will be apparent to those of ordinary skill in the art that many modifications, changes, and omissions are possible without materially departing from the novel teachings, the principles and concepts set forth herein, and advantages of the subject matter recited in the appended claims. Hence, the proper scope of the disclosed innovations should be determined only by the broadest interpretation of the appended claims so as to encompass all such modifications, changes, and omissions. In addition, the order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments.
Number | Date | Country | Kind |
---|---|---|---|
FI2013A000117 | May 2013 | IT | national |
This application is a national stage application under 35 U.S.C. §371(c) of prior filed, co-pending PCT application serial number PCT/EP2014/060266, filed on May 19, 2014, which claims priority to Italian Patent Application Serial No. FI2013A000117, titled “TURBOMACHINE ROTOR ASSEMBLY AND METHOD” filed May 21, 2013. The above-listed applications are herein incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/060266 | 5/19/2014 | WO | 00 |