The present disclosure generally relates to turbomachines. More particularly, the present disclosure relates to rotor blades for turbomachines.
A gas turbine engine generally includes a compressor section, a combustion section, and a turbine section. The compressor section progressively increases the pressure of air entering the gas turbine engine and supplies this compressed air to the combustion section. The compressed air and a fuel (e.g., natural gas) mix within the combustion section and burn within one or more combustion chambers to generate high pressure and high temperature combustion gases. The combustion gases flow from the combustion section into the turbine section where they expand to produce work. For example, expansion of the combustion gases in the turbine section may rotate a rotor shaft connected to a generator to produce electricity.
The turbine section generally includes a plurality of rotor blades. Each rotor blade includes an airfoil positioned within the flow of the combustion gases. In this respect, the rotor blades extract kinetic energy and/or thermal energy from the combustion gases flowing through the turbine section. Certain rotor blades may include a tip shroud coupled to the radially outer end of the airfoil. The tip shroud reduces the amount of combustion gases leaking past the rotor blade.
The rotor blades generally operate in extremely high temperature environments. As such, the tip shroud of each rotor blade may define a cooling core having various cooling channels through which a coolant may flow. Nevertheless, the conventional cooling core configurations may limit the effectiveness of the coolant. This, in turn, may limit the operating temperature and/or the service life of the rotor blade.
Aspects and advantages of the technology will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the technology.
In one aspect, the present disclosure is directed to a rotor blade for a turbomachine. The rotor blade defines an axial direction, a radial direction, and a circumferential direction. The rotor blade includes an airfoil defining a cooling passage and a tip shroud coupled to the airfoil. The tip shroud and the airfoil define a cooling core in fluid communication with the cooling passage. The tip shroud including a forward exterior wall, an aft exterior wall spaced apart from the forward exterior wall along the axial direction, a radially inner exterior wall, a radially outer exterior wall spaced apart from the radially inner wall along the radial direction, a pressure side wall, and a suction side wall spaced apart from the pressure side wall along the circumferential direction. The tip shroud further includes first and second interior walls positioned within the cooling core. The first interior wall is non-coplanar with the second interior wall in the axial, radial, and circumferential directions.
In another aspect, the present disclosure is directed to a turbomachine including a turbine section having one or more rotor blades. Each rotor blade defines an axial direction, a radial direction, and a circumferential direction. Each rotor blade includes an airfoil defining a cooling passage and a tip shroud coupled to the airfoil. The tip shroud and the airfoil define a cooling core in fluid communication with the cooling passage. The tip shroud including a forward exterior wall, an aft exterior wall spaced apart from the forward exterior wall along the axial direction, a radially inner exterior wall, a radially outer exterior wall spaced apart from the radially inner wall along the radial direction, a pressure side wall, and a suction side wall spaced apart from the pressure side wall along the circumferential direction. The tip shroud further includes first and second interior walls positioned within the cooling core. The first interior wall is non-coplanar with the second interior wall in the axial, radial, and circumferential directions.
These and other features, aspects and advantages of the present technology will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the technology and, together with the description, serve to explain the principles of the technology.
A full and enabling disclosure of the present technology, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present technology.
Reference will now be made in detail to present embodiments of the technology, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the technology. As used herein, the terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows.
Each example is provided by way of explanation of the technology, not limitation of the technology. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present technology without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present technology covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Although an industrial or land-based gas turbine is shown and described herein, the present technology as shown and described herein is not limited to a land-based and/or industrial gas turbine unless otherwise specified in the claims. For example, the technology as described herein may be used in any type of turbomachine including, but not limited to, aviation gas turbines (e.g., turbofans, etc.), steam turbines, and marine gas turbines.
Referring now to the drawings, wherein identical numerals indicate the same elements throughout the figures,
The turbine section 18 may include a rotor shaft 24 having a plurality of rotor disks 26 (one of which is shown) and a plurality of rotor blades 28. Each rotor blade 28 extends radially outward from and interconnects to one of the rotor disks 26. Each rotor disk 26, in turn, may be coupled to a portion of the rotor shaft 24 that extends through the turbine section 18. The turbine section 18 further includes an outer casing 30 that circumferentially surrounds the rotor shaft 24 and the rotor blades 28, thereby at least partially defining a hot gas path 32 through the turbine section 18.
During operation, the gas turbine engine 10 produces mechanical rotational energy, which may, e.g., be used to generate electricity. More specifically, air enters the inlet section 12 of the gas turbine engine 10. From the inlet section 12, the air flows into the compressor 14, where it is progressively compressed to provide compressed air to the combustion section 16. The compressed air in the combustion section 16 mixes with a fuel to form an air-fuel mixture, which combusts to produce high temperature and high pressure combustion gases 34. The combustion gases 34 then flow through the turbine 18, which extracts kinetic and/or thermal energy from the combustion gases 34. This energy extraction rotates the rotor shaft 24, thereby creating mechanical rotational energy for powering the compressor section 14 and/or generating electricity. The combustion gases 34 exit the gas turbine engine 10 through the exhaust section 20.
As illustrated in
Referring now to
As shown in
As mentioned above, the rotor blade 100 includes the tip shroud 116. As illustrated in
Referring now to
The exterior walls 134, 136, 138, 140, 142, 144 of the tip shroud 116 and the airfoil 114 define a cooling core 146. As will be described in greater detail below, the coolant flows through the cooling core 146, thereby cooling the tip shroud 116. In this respect, the cooling core 146 may include various chambers and channels therein. For example, in the embodiment shown in
During operation of the gas turbine engine 10, coolant (e.g., as identified by arrows 158) flows through the cooling core 146 to cool the tip shroud 116. More specifically, the coolant 158 (e.g., bleed air from the compressor section 14) enters the rotor blade 100 through the intake port 112 (
The flow passage 156 may be defined by various interior walls positioned within the cooling core 146. In the embodiment shown in
The interior walls 168, 170, 172, 174 may have various configurations to create the requisite non-coplanar relationships. As shown, in certain embodiments, some or all interior walls 168, 170, 172, 174 may be curved. For example, the interior walls 168, 170, 172, 174 may be curved in at least two of the axial, radial, or circumferential directions A, R, C in some embodiments. In further embodiments, some or all interior walls 168, 170, 172, 174 may be helical. For example, a first portion of the first interior wall 168 may be spaced apart from a second portion of the first interior wall 168 along the radial direction R. Furthermore, the first portion of the first interior wall 168 may also being aligned with the second portion of the first interior wall 168 along the axial or circumferential directions A, C. That is, the helical configuration of the first interior wall 168 may permit the first interior wall 168 to cross over itself.
As described in greater detail above, the rotor blade 100 includes the tip shroud 116 having interior walls (e.g., the first and second interior walls 168, 170) that are non-coplanar in the axial, radial, and circumferential directions A, R, C. In this respect, and unlike conventional cooling cores, the cooling core 146 may have cooling channels that are curved the axial, radial, and circumferential directions A, R, C (e.g., helical channels). As such, the cooling core 146 may provide greater cooling to the tip shroud 116 than the cooling cores of conventional tip shroud, thereby permitting higher operating temperatures and/or a longer service life.
This written description uses examples to disclose the technology, including the best mode, and also to enable any person skilled in the art to practice the technology, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the technology is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.