The present invention relates generally to techniques for reducing cracks in gas turbine rotor blades and/or compressor blades in their trailing edges and more specifically to a turbomachinery blade having a relief hole formed in its platform adjacent its trailing edge.
The turbine section of gas turbine engines typically comprise multiple sets or stages of stationary blades, known as nozzles or vanes, and moving blades, known as rotor blades or buckets.
In one such solution, an undercut is machined into the blade platform. An example of such an undercut can be found in
The goal of the undercut approach is to alleviate both the mechanical stress and the thermal stress in this location by relaxing the rigidity of that juncture where the airfoil and platform join. This approach has been implemented on both turbine and compressor blades as both a field repair and a design modification. If a stress reduction is achieved in the airfoil root region, the concern is whether the undercut results in a high stress within the grooved region where material is removed. In other words, the success of the strategy turns on whether a balance can be achieved without creating a new area of stress within the blade.
There are two primary concerns raised with platform undercuts. First, whether the undercut will be effective in reducing the stress at the trailing edge. Second, whether the stress produced in the undercut will be so high that it offsets the benefit of the undercut. The problem with prior undercut solutions is that they have had difficulty striking that balance. It is desired to have a solution which reduces the stress at the trailing edge, but minimizes the stress formed in the region of the undercut. The present invention seeks to solve this problem.
In one embodiment, the present invention is directed to a turbine blade which limits trailing edge cracking. The turbine blade has of an airfoil connected to a platform in a root region. The airfoil has a trailing edge which extends from the root region to a tip distal from the root region. The turbine blade limits trailing edge cracking via a relief hole formed in the platform proximate the trailing edge. In one embodiment, the relief hole is formed in the concave side of the platform. The relief hole may also have a centerline which is aligned with a mean camber line at the trailing edge.
In another embodiment, the present invention is directed to a method of limiting cracking in a turbine blade. The method includes the step of forming a relief hole in the platform of the turbine blade proximate the trailing edge. In one embodiment, the relief hole is machined into the concave side of the platform aligned with a mean camber line at the trailing edge.
The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The present invention may be better understood by reference to one or more of these drawings in combination with the description of embodiments presented herein. However, the present invention is not intended to be limited by the drawings.
The present invention will now be described with reference to the following exemplary embodiments. Referring now to
The airfoil 206 is defined by a concave side wall 208, a convex side wall 210, a leading edge 212 and opposite trailing edge 214; the leading and trailing edges being the two areas where the concave side wall and convex side wall meet. The airfoil 206 has a root 216 which is proximate the platform 204 and a tip (or shroud) 218 which is distal from the platform. As with prior art turbine blades, air is supplied to the inside cavity of the airfoil 206 (not shown) from the compressor to cool the inside of the airfoil. The cooling air may exit through a plurality of cooling holes 220, at least some of which may be formed in the trailing edge 214. The cooling hole nearest the root of the blade 220a is the one where the cracking 104 typically takes place. It is the prevention of the formation of these cracks and a control of their future propagation to which the present invention is directed.
The platform 204 has a concave side 230, a convex side 232, a leading edge side 234, and a trailing edge side 236, as shown in
In one exemplary embodiment, the relief hole 240 is a blind hole, i.e., it does not exit on any other face of the platform 204, but may be any suitably sized and shaped opening or cavity. The relief hole 240 is desirably cylindrical in shape having a circular cross-section. However, as those of ordinary skill in the art will appreciate, the relief hole 240 can have other suitable geometric configurations.
In one exemplary embodiment, the relief hole 240 enters the platform 204 at the approximate midpoint of its thickness in line with the trailing edge 214. The relief hole has a centerline 242 that is aligned with the mean camber line 244 at the trailing edge 214, as shown in
The thermal response for the blade 200 having the relief hole 240 is basically unchanged when compared to the original configuration. The relief hole 240 significantly reduces the maximum principal stress at the root trailing edge cooling hole 220a. The TMF life at trailing edge 214 also increases significantly with the implementation of the relief hole 240. Stress near the relief hole 240 is comparable and slightly lower than that at the trailing edge 214. In one representative case, the maximum principal stress was reduced 17% and the TMF life increased by approximately 150%. Therefore, the benefit of the relief hole 240 is believed to be substantial.
While the relief hole 240 is shown in the concave side 230 of the platform 204, and aligned with the mean camber line 244, the relief hole 240 may be in the convex side 232 as shown in
Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.
Number | Name | Date | Kind |
---|---|---|---|
5096379 | Stroud et al. | Mar 1992 | A |
6071075 | Tomita et al. | Jun 2000 | A |
6120249 | Hultgren et al. | Sep 2000 | A |
6190128 | Fukuno et al. | Feb 2001 | B1 |
6390775 | Paz | May 2002 | B1 |
6722852 | Wedlake et al. | Apr 2004 | B1 |
6857855 | Snook et al. | Feb 2005 | B1 |
6893216 | Snook et al. | May 2005 | B2 |
7063509 | Snook et al. | Jun 2006 | B2 |
20050058545 | Cardenas | Mar 2005 | A1 |
20050095129 | Benjamin et al. | May 2005 | A1 |
20060056969 | Jacala et al. | Mar 2006 | A1 |
20070269316 | Williams et al. | Nov 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070269313 A1 | Nov 2007 | US |