This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Pumps enable the flow of a fluid through various mechanical systems, such as turbomachinery. Turbomachinery may include pumps, turbines, and compressors. The pump may enable lubrication, cooling and/or sealing of the turbomachinery, thus increasing the operational life and efficiency of the turbomachinery. For example, heat generated by the turbomachinery may be transferred to a fluid and then transferred to a cooling medium. Likewise, the fluid may lubricate various mechanical components of the turbomachinery, decreasing friction between the components. Unfortunately, the pump may take valuable space, increasing the footprint of the turbomachinery.
Various features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying figures in which like characters represent like parts throughout the figures, wherein:
One or more specific embodiments of the present invention will be described below. These described embodiments are only exemplary of the present invention. Additionally, in an effort to provide a concise description of these exemplary embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present invention, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Moreover, the use of “top,” “bottom,” “above,” “below,” and variations of these terms is made for convenience, but does not require any particular orientation of the components.
The disclosed embodiments include a bearing oil feed system including a gear pump, such as a crescent gear pump. The bearing oil feed system may also include a bearing support system, such as a sleeve bearing. In certain embodiments, the bearing oil feed system may be incorporated in turbomachinery, such as a compressor, a pump, or a turbine, and used to mechanically support as well as lubricate certain components of the turbomachinery. In one embodiment, the gear pump is a crescent gear pump that minimizes its axial length by incorporating two gears inside of a pump housing. In other embodiments, the gear pump may be a spur gear pump (e.g., pump having two side-by-side meshing spur gears), a helical gear pump (e.g., pump having meshing helical gears), or a gerotor pump (i.e., generated rotor pump), also suitable for minimizing the gear pump's axial length. Additionally, the bearing oil feed system, including the gear pump, may be recessed within the turbomachinery, further reducing an axial profile of the bearing oil feed system.
The integrated bearing system of the bearing oil feed system may support a gear included in a rotor of a turbomachinery, such as a compressor. For example, the gear may include a “bull” gear of the compressor suitable for driving one or more compressor scrolls. Additionally, the bearing oil feed system may supply a lubricant and/or coolant, such as oil, to various regions of the integrated bearing (e.g., sleeve bearing) as well as to other components of the turbomachinery. Indeed, the bearing oil feed system may use integral passages in the bearing and/or in the turbomachinery to deliver the lubrication and/or cooling fluid. Such integral passages include internal bores formed by drilling, casting, milling, and so forth. The integral passages may also be used to couple the gear pump and bearing system to an integral modular lubrication system. The integral modular lubrication system may further reduce the size and profile of the turbomachinery by integrating components such as a filter, heat exchanger, thermal regulator, and valves with the turbomachinery, further streamlining the turbomachinery size and geometric profile. Indeed, an improved lubrication system having enhanced suction life capabilities and reduced noise may be constructed using the embodiments disclosed herein.
With the foregoing in mind and turning to
During rotor operations, the rotor 12 may rotate about an axis, directly or indirectly driving a load such as a compressor scroll 22. It is to be understood that any mechanical load may be directly or indirectly coupled to the rotor 12 in addition to or alternative to the compressor scroll 22. For example electrical generators, other scrolls, vanes, blades, and so forth, may be coupled to the rotor 12. The rotor 12 is also coupled to the gear pump 16. Accordingly, the rotation of the rotor 12 may also drive the gear pump 16, creating a suction force or lift suitable for transferring a lubrication fluid from an oil tank 24 into the bearing oil feed system 14. In certain embodiments, the fluid may be transferred through integral passages 26. That is, passages or bores 26 internal to the turbomachinery 10 and/or rotor 12 may be used to direct the lubrication fluid into the bearing oil feed system 14. In this way, the use of external plumbing and/or feed lines is minimized or eliminated, resulting in the turbomachinery 10 having a more streamlined geometry or profile. The integral passages 26 may be formed by any suitable technique, such as drilling, casting, milling, and so forth.
The lubrication fluid may be used to lubricate any number of components of the turbomachinery 10, including the rotor 12. Indeed, the lubrication fluid may be further distributed to lubricate seal faces, other bearings, gears, and so forth. The gear pump 16 may also distribute the lubrication fluid to the bearing system 18 and/or to the integral modular lubrication system 20. Indeed, the bearing system 18 included in the bearing oil feed system 14 is a self-lubricating bearing system 18, in which an increase in the rotational motion of the rotor 12 results in additional lubrication of the bearing system 18 as described in more detail below.
The gear pump 16 may also direct the lubrication fluid into the integral modular lubrication system 20 for further processing, by using, for example, internal or integral passages 28. In other examples, external passages such as pipes or conduits may be used by the gear pump 16 to direct the lubrication fluid into the integral modular lubrication system 20. The integral modular lubrication system 20 may then filter the lubrication fluid by using a filter or strainer 30 suitable for removing particulate matter or otherwise for cleaning the lubrication fluid. The lubrication fluid may then be directed via internal passages 32, for example, into a heat exchanger 34 (e.g., cooler) suitable for cooling the lubrication fluid. More specifically, the heat exchanger 34 may cool the lubrication fluid by directing the lubrication fluid through a cooling medium, such as a gas or a liquid. Heat from the lubrication fluid may then transfer to the cooling medium, thereby reducing the temperature of the lubrication fluid.
In certain embodiments, a thermal regulator 36 may be included in the integral modular lubrication system 20. The thermal regulator 36 enables a more constant operating temperature for the lubrication fluid, for example, by using an integral passage 38 to bypass the heat exchanger 34 so as to maintain a more uniform operating temperature. For example, if the lubrication fluid is below a certain temperature, then no cooling may be needed. Accordingly, the integral passage 38 may be used to bypass the heat exchanger 34. Additionally, a pressure relief valve 40 may be used to maintain lubrication fluid pressure within a certain range. For example, should a pressure of the lubrication fluid exceed a certain limit, the pressure relief valve 40 may redirect a portion or all of the lubrication fluid flow into the oil tank 24 by using an integral passage 42, thus relieving the pressure. Otherwise, the lubrication fluid may be directed to flow into the turbomachinery 10 and the rotor 12 through integral passages 44. An integral passage 46 may then be used to transfer the lubrication fluid into the oil tank 24 for further reuse. By employing a bearing oil feed system 14 and an integral modular lubrication system 20, the turbomachinery 10 may include enhanced lubrication capabilities while also minimizing size, axial length, and reducing or eliminating the use of external pipes or conduits.
As the compressor 50 rotates the gear 56 around an axis, such as the Y-axis, the shaft 58 coupled to the gear 56 also rotates about the same axis. The bearing system 18 and housing 64 remain approximately stationary, enabling the gear 56 to rotate axially with respect to the bearing system 18 and the housing 64. However, since the shaft 58 is coupled to the gears 60 and 62, the gears 60 and 62 rotate with respect to the housing 64. The rotating gears 60 and 62 create a suction lift suitable for transferring lubrication fluid from the oil tank 24 (shown in
In the illustrated embodiment, rotation 67 of the gear 56 about the Y-axis results in an equivalent rotation 67 of the shaft 58. Accordingly, the gears 60 and 62 connected to the shaft 58 will also rotate. The rotation of the gears 60 and 62 may create a suction effect or lift. More specifically, the rotation of the gears 60 and 62 may create an expanding volume on an inlet port 68, which in turn creates a vacuum suitable for suctioning a flow 73 of lubrication fluid into the gear pump 16. The lubricant fluid may then be contained or trapped inside internal voids such as a void defined by teeth of the gears 60 and 62 as described in more detail below with respect to
As illustrated, an integral passage 76 may be used to direct lubrication fluid to the integral modular lubrication system 20 and/or other components of the turbomachinery 10. Indeed, the integral passage 76 may direct lubrication fluid through the inside of the gear pump 16 and bearing system 18 for further use by the turbomachinery 10, eliminating the need for external conduits. Additionally, an integral passage 78 may transfer lubrication fluid from the integral passage 76 into the cylindrical wall 70 of the bearing system 18. By enabling a flow of lubrication fluid into the integral passage 78, an interface between the cylindrical wall 70 of the bearing system 18 and the inner chamber 72 of the gear 56 may be kept suitably lubricated. It is to be understood that a variety of gear pumps 16 may be used for transferring lubricant in the bearing oil feed system 14, such as a spur gear pump, a helical gear pump, a gerotor pump, or a crescent gear pump, which is described in more detail with respect to
In one embodiment, the integral passage 76 may be disposed in a metal cylinder 84 of the pump 16 and used to direct some of the lubrication flow 73 into the integral passage 76. As mentioned above with respect to
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1869776 | Randolph et al. | Aug 1932 | A |
1883832 | Sundstrand | Oct 1932 | A |
2225228 | Neeson | Dec 1940 | A |
2277270 | Schmitter et al. | Mar 1942 | A |
2481143 | Muller | Sep 1949 | A |
2634686 | Schmitter | Apr 1953 | A |
3598455 | Schmitz | Aug 1971 | A |
4355542 | Tsutsumi et al. | Oct 1982 | A |
4714405 | Schaefer et al. | Dec 1987 | A |
5189929 | Chory | Mar 1993 | A |
5243822 | Vismara | Sep 1993 | A |
6221130 | Kolodziej et al. | Apr 2001 | B1 |
6488467 | Czechowski et al. | Dec 2002 | B2 |
6616421 | Mruk et al. | Sep 2003 | B2 |
6679689 | Takahashi et al. | Jan 2004 | B2 |
6692235 | Kolodziej et al. | Feb 2004 | B2 |
7819634 | Kolodziej et al. | Oct 2010 | B2 |
7832992 | Kolodziej et al. | Nov 2010 | B2 |
7854299 | Czechowski et al. | Dec 2010 | B2 |
20060008368 | Czechowski et al. | Jan 2006 | A1 |
20070006675 | Marla et al. | Jan 2007 | A1 |
20070166158 | Kabir et al. | Jul 2007 | A1 |
20090014244 | Cavarello et al. | Jan 2009 | A1 |
20090155096 | Czechowski et al. | Jun 2009 | A1 |
20100098534 | Small et al. | Apr 2010 | A1 |
20110280749 | Hahn | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
2275652 | Mar 1998 | CN |
167581 | Aug 1921 | GB |
Entry |
---|
PCT Notification of Transmittal of the International Search Report and Written Opinion; Application No. PCT/US2012/021141; Dated May 7, 2012; 12 pages. |
Number | Date | Country | |
---|---|---|---|
20120183391 A1 | Jul 2012 | US |