This disclosure relates generally to turbomachines, and, more particularly, to turbomachines having guide ducts.
Turbomachines with a housing and a rotor are shown in Japanese Patent No. JP 9 264 106 A. In such known turbomachines, pressure energy of working medium can be converted into mechanical work and vice-versa. In such turbomachines, problems are encountered when the rotor blades are supplied with working medium flowing faster than the speed of sound (i.e., a supersonic flow). The efficiency of conversion of pressure energy in these turbomachines and, hence, the performance of these turbomachines may be reduced due to pressure surges, etc.
The figures are not to scale. Instead, to clarify multiple layers and regions, the thicknesses of the layers may be enlarged in the drawings. Wherever possible, the same reference numbers will be used throughout the drawing(s) and accompanying written description to refer to the same or similar parts. As used in this patent, stating that any part (e.g., a layer, film, area, or plate) is in any way positioned on (e.g., positioned on, located on, disposed on, or formed on, etc.) another part, means that the referenced part is either in contact with the other part, or that the referenced part is above the other part with one or more intermediate part(s) located therebetween. Stating that any part is in contact with another part means that there is no intermediate part between the two parts.
The examples disclosed herein relate to a turbomachine having a housing with a housing duct for the inflow or outflow of working medium, and a rotor positioned to be rotatable about an axis of rotation. The rotor has a multiplicity of rotor blades, which form rotor blade ducts.
The examples disclosed herein provide a turbomachine of high efficiency, in which rotor blades of such turbomachines can be provided with a supersonic flow. In particular, the examples disclosed herein enable a turbomachine suitable to be used as a turbine or compressor in an Organic Rankine Cycle (“ORC”) system.
In some examples, turbomachines have rotor blade ducts to communicate with a housing duct via guide blade ducts. The guide blade ducts of such turbomachines are fixed in relation to the housing and have a guide blade duct opening on the rotor side and a guide blade duct opening on the housing duct side.
Turning to the figures,
The rotor 16 of the illustrated example has a rotor blade support 26, to which the rotor blades 28 are fixed (e.g., coupled) by a material bond. In this example, the rotor blades 28 are stabilized and shrouded on the side facing away from the rotor blade support by an annular shroud ring member 30, which is connected to the rotor blades 28 via fastening screws 38. The rotor blade support 26 of the illustrated example has a guide contour 32 that is rotationally symmetrical in relation to the axis of rotation 18 and extends into a diffuser space 34 of a diffuser 35. The rotor blades 28 form (e.g., define) rotor blade ducts 84, which deflect the working medium flowing between the housing duct 24 and the diffuser space 34. The guide blades 22 are connected materially (e.g., coupled, adhered, integral, etc.) to the guide blade support 20. The guide blade support 20 is assigned an annular cover 36, which is held in the housing 12. In this example, the annular cover 36, by means of a connecting surface 33, forms spirally curved guide blade ducts 42 with the guide blade support 20 and the guide blades 22. The guide blade of the illustrated example ducts each act as Laval nozzles.
In some examples, the guide blade support 20 and the guide blades 22 are produced (e.g., integrally formed) from a flanged socket. In regards to production engineering, such integration enables the possibility of producing and/or forming the shape of the guide blades 22 from the guide blade support 20 by milling, erosion and/or electrolytic machining after turning, for example, to produce a curved slope on the side facing the annular cover 36. The guide blade support 20 of the illustrated example has a mounting flange 40, by which the guide blade support 20 can be fixed to the housing 12 of the turbomachine 10.
The guide blades 22, in some examples, are machined from the guide blade support 20 by, for example, an end mill because the bottom wall of a guide blade duct 42 is relatively flat, the cross-sectional profile of a guide blade duct 42 has edges and/or each guide blade duct 42 has a substantially similar design. By guiding the end mill, for example, any desired straight or curved guide blade duct shape sloping toward the axis of rotation 18 and having the same width or variable width may be produced.
The rotor 16 of the illustrated example with the rotor blade support 26 and the rotor blades 28 may be produced by milling, erosion and/or electrolytic machining. In some examples, the rotor blade support 26 is produced on a machine tool as a turned part that has a thick edge with a bevel. In some examples, the rotor blade ducts 84 are then machined from this edge by erosion, electrolytic machining and/or milling. In some examples, the use of an end mill is especially suitable since the bottom of the corresponding ducts may be flat over the entire length of the ducts and each duct is of the same or similar depth. In some examples, by guidance of the end mill, any desired straight or curved duct shape sloping toward the axis of rotation 18 and of the same width or of variable width may be generated. In some examples, the annular shroud ring member 30 allows the desired nozzle duct geometry with an inlet and outlet edge on each rotor blade to be produced by the bevel of the rotor blade support 26.
The guide blade ducts 42 have openings 48 on the housing side. As shown in
In this example, a tangent 80, which lies in a plane perpendicular to the axis of rotation 18 and applied to the concave blade surface 78 at the first rotor blade edge 52, and a tangent 82 to the cylinder circumferential surface 53, which is coaxial with the axis of rotation 18, define an angle β1, in which the tangent 82 passes through the first rotor blade edge 52 and lies in a plane substantially perpendicular to the axis of rotation 18, and the following may apply: β1≈29°. In some examples, a tangent 85, which lies in a plane perpendicular to the axis of rotation 18 and is applied to the concave blade surface 78, and a tangent 86 to the cylinder circumferential surface 59 in a plane perpendicular to the axis of rotation define an angle β2, in which the tangent 86 passes through the second rotor blade edge 54 and the following may apply: β2≈40.5°. In other words, in some examples, the tangent 80 defines an angle: :β1+90° with the straight line 81, which passes through the first blade edge 52 and perpendicularly intersects the axis of rotation 18, where the angle ≈119°. Likewise, in some examples, a tangent 80 lying in a plane perpendicular to the axis of rotation 18 and applied to the concave blade surface 78 at the second blade edge 54 forms an angle: =90°−β2 with a straight line 89, which passes through the second blade edge 54 and perpendicularly intersects the axis of rotation 18, where the angle ≈49.5°.
In this example, the distance r2 of the first blade edge 52, which faces the guide blade ducts 42, of each rotor blade 28 from the axis of rotation 18 and the distance r1 of the second blade edge 54, which faces away from the guide blade ducts, of each rotor blade 28 from the axis of rotation 18 satisfy the following relation: r1/r2≈75%.
In this example, the following relation applies to the number Z=59 of the rotor blades 28 of the rotor 16: Z≈C·r1/r2, where r2 is the distance of the first blade edge 52, which faces the guide blade ducts 42, of each rotor blade 28 from the axis of rotation 18, and where r1 is the distance of the second blade edge 54, which faces away from the guide blade ducts 42, of each rotor blade 28 from the axis of rotation 18 where C=78.66 is a constant within the number interval [70, 90].
In this example, the distance r2 of the first blade edge 52, which faces the guide blade ducts 42 of each rotor blade 28, from the axis of rotation 18 and the height hE, which is parallel to the axis of rotation 18, of the first blade edge 52 of each rotor blade 28 satisfy the following relation:
12%≤hE/r2≤28%.
The shape visible in
In some examples, the turbomachine 10 described above is suitable for use as a turbine in an Organic Rankine Cycle process or for compressing working medium in an Organic Rankine Cycle process.
During such a process, the working medium evaporates. Saturated steam or dry steam is then made available at the outlet of the heat exchanger 123. Because of the energy input in the heat exchanger 123, the specific volume and temperature of the steam increase during such a process.
In this example, the working medium steam is then expanded to a lower pressure through the turbomachine 110 coupled to a generator 121 in a virtually isentropic manner. As a result, the specific volume increases because of the expansion. The associated increase in the volume of the working medium caused by the pressure difference results in volumetric work, which the turbomachine 110 converts into mechanical energy at its blades. The turbomachine 110 of the illustrated example drives the generator 121.
In this example, the steam from the turbomachine 110 passes into the working medium condenser 124, which is a heat exchanger through which a coolant circuit 131 containing a cooling liquid passes through. Because of the coolant circuit 131, the heat released during condensation is fed into a heat distribution system. In some examples, the heat of the coolant carried in the coolant line 131 is released (e.g., distributed) to the environment via a heat exchanger.
In this example, within the heat exchanger, which functions (e.g., acts) as a working medium condenser 124, the working medium condenses and changes into the liquid state of aggregation. In this example, the feed pump 122, which acts as a working medium pump, enables the working medium to be brought back to operating pressure and returns the working medium to the heat exchanger 123 acting as an evaporator. The circuit for the working medium in the ORC system 2 is then closed.
Each guide blade duct 242″ in the turbomachine 210″ has a constriction 250″ with a narrowest cross section at a distance a from the cylinder circumferential surface 268″. In this example, on the rotor side of the constriction 250″, the cross section of the guide blade duct is divergent (i.e., as the width b remains substantially similar, the height h increases toward the rotor 216″). On the housing duct side of the constriction 250″, the cross section of the guide blade duct 242″ is convergent (i.e., the cross-sectional area decreases toward the rotor 216″) from the housing duct. In other examples, other nozzle geometries including subsonic nozzles, for example, can be provided.
In this example, the guide blades 322 of the turbomachine 310 are covered by an annular cover 336. With the guide blade support 320 and the guide blades 322 formed thereon, the cover 336 forms guide blade ducts 342, each of which have an opening in fluid communication with the housing duct 324. In this example, the guide blade ducts 324 have a substantially spiral shape and guide the working medium on a flow path between the housing duct 324 and the rotor 316, which has a curvature directed toward the rotor 316. In this example, from the housing duct 325 to the rotor 316, the cross section of the guide blade ducts 342 tapers in relation to the axis of rotation 318 while having a substantially constant width up to the constriction 350, which is at a distance rhmin from the axis of rotation 318. From the constriction 350, the free cross section of the guide blade ducts 342 then increases again in the direction of the rotor 316. In this example, each of the guide blade ducts 342 thus has the shape of a spirally curved nozzle which, in the example of a Laval nozzle, initially tapers in the direction toward the rotor 316 from the housing duct 324 and then widening where the nozzle has a trapezoidal opening cross section.
By means of this geometry, there is, in particular, an increase in the efficiency of turbomachines in ORC systems, in which the flow within the blading is usually greater than the speed of sound. Since the ducts are easier to form, there is also a reduction in manufacturing costs.
In some examples, it should be noted that a very high efficiency of a turbomachine can be achieved with the above-described geometries of the guide blade ducts 42, 242, 342 and of the rotor blades 28, 228, 328. This high efficiency may be achieved especially when such turbomachines are used as turbomachines for ORC systems, in which the speed of flow of the working medium within the rotor blading is generally above the speed of sound. Because the flow ducts in the above-described turbomachines may be formed with relative ease, these turbomachines may be produced with very low manufacturing costs. In these examples, it should be noted that the above-described production methods for the rotor blades and the guide blade ducts of the above-described turbomachines are also suitable for corresponding assemblies in axial turbines. In such axial turbines, the geometry of the ducts is preferably adapted to the change in the flow direction relative to the rotor axis as compared to a radial turbine.
The following preferred features of the examples disclosed should be noted below. The preferred examples disclosed herein relate to an example turbomachine 10 having a housing 12, which has a housing duct 24 for the inflow or outflow of working medium. The example turbomachine has a rotor 16, which is arranged to be rotatable about an axis of rotation 18 and has a multiplicity of rotor blades 50 that form rotor blade ducts 84. In this example, the rotor blade ducts 84 communicate with the housing duct 24 via guide blade ducts 42 formed in the housing.
The examples disclosed herein provide a high efficiency turbomachine in which the rotor blades can be supplied with a supersonic flow. For example, it is an object of the examples disclosed to provide a turbomachine that is suitable for use as a turbine or compressor in an ORC system.
Such a turbomachine in which the rotor blade ducts are in fluid communication with the housing duct via guide blade ducts that are fixed relative to the housing that have a guide blade duct opening on the rotor side and a guide blade duct opening on the housing duct side.
The examples disclosed herein are based on the principle that the working media in “ORC systems” (ORC=Organic Rankine Cycle), in which heat may be converted into mechanical energy via a thermodynamic cycle using a circulated organic working medium, which may include butane, toluene, silicone oil, ammonia, methylcyclohexane and/or ethylbenzene (ORC process). Such an organic working medium generally has a low evaporation temperature in relation to water for which the speed of sound is relatively low. As a result, losses that prejudice the efficiency of such a system may occur even at relatively low flow velocities in turbomachines operated in such systems.
In some examples, to lower (e.g., minimize) the flow losses in a turbomachine, the turbomachine has a housing with guide blade ducts configured to enable the formation of pressure surges coalescing in the guide blade ducts (i.e., coming together in the guide blade ducts) to be counteracted.
In some examples, the guide blade ducts are configured as Laval nozzles or in a manner similar to a Laval nozzle (i.e., as a flow element that has a constriction, a convergent cross section before the constriction and a divergent cross section after the constriction) viewed in the direction of flow when the turbomachine is operated as a turbine. In some examples, the transition from the convergent to the divergent segment of the guide blade ducts is gradual. A fluid flowing through can, therefore, be accelerated to supersonic speed in the guide blade ducts without excessive compression surges. In some examples, the speed of sound is reached precisely in the narrowest cross section of the nozzle. In some examples, the cross section of the guide blade ducts is preferably angular. However, in some examples, the guide blade ducts have a generally round-shaped cross section. In some examples, the guide blade ducts preferably have a concave wall surface that faces the rotor and against which working medium can flow. In contrast, in some examples, the wall surface of the guide blade ducts that faces away from the rotor and against which working medium can flow has a convex shape. In such examples with the convex shape, the guide blade ducts have a flow cross section that increases monotonically in a direction of flow of working medium toward the rotor ducts. For this purpose, the guide blade ducts may have a width in the plane perpendicular to the axis of rotation that increases monotonically in the direction of flow of working medium toward the rotor ducts and/or the direction for the guide blade ducts has a corresponding height in the direction of the axis of rotation that increases in a correspondingly monotonic manner.
In some examples, the guide blade ducts each have a center line that is spaced apart uniformly from a wall surface facing the rotor and a wall surface facing away from the rotor. The center line divides the cross-sectional profile of a guide blade duct into a segment on the housing duct side and a segment on the rotor side, where the cross-sectional profile of each guide blade duct is asymmetrical in relation to the center line. In this example, the segment on the housing duct side and the segment on the rotor side each preferably have a free cross-sectional area for the passage of working medium, where the free cross-sectional area of the segment on the rotor side is larger than the free cross-sectional area of the segment on the housing duct side. In some examples, the cross-sectional profile of a guide blade duct is trapezoidal.
In some examples, a turbomachine according to the examples disclosed herein can be operated as an “action” or “impulse” turbine, in which a working medium such as a gas and/or steam is accelerated in the guide blade ducts between the guide blades, a reduction in pressure of the working medium and the associated expansion occurs, and then the working medium impinges on the rotor blades of the rotor. This impingement leads to a transfer of momentum to the rotor allowing a torque to be exerted on an output shaft connected to the rotor. In some examples, the resulting mechanical power can be used to drive a generator for producing electrical energy.
In some examples, to obtain a resultant force in the direction of rotation of the rotor when supplying the rotor blades with the working medium, it is advantageous if as much as possible of the flow emerging from a guide blade duct has, to the largest extent possible, an ideal angle relative to the blade wheel for a working medium. According to the examples disclosed herein, therefore, the guide blade ducts of the turbomachine are designed to allow the working medium to be guided to the blade wheel with a flow that has a flow component perpendicular to the radius of the rotor. In some examples, the working medium is guided onto the rotor through guide blade ducts that lie in a plane substantially perpendicular to the axis of rotation of the rotor and curved toward the rotor. It has been determined that if the working medium is guided onto the rotor on a straight flow path, only a relatively small portion of the flow is at the ideal angle relative to the rotor at the end of the corresponding guide blade duct in the direction of flow. In this example, that portion of the flow that is closest to the guide blades is either at too small or too large an angle relative to the blade wheel. In the examples with supersonic flows, such flow angles cause powerful pressure surges to occur between the rotor blading and the guide blading, thereby impairing the efficiency of the turbomachine.
According to the examples disclosed herein, the guide blade ducts may be formed with openings on the housing duct side that lie on a cylinder circumferential surface arranged coaxially with the axis of rotation, and guide the working medium in the center with a flow path that passes through the cylinder circumferential surface at a point of intersection at which the tangent to the flow path and the tangent to the cylinder surface, which lies in a plane substantially perpendicular to the axis of rotation, form an angle α1 to which the following applies: 5°≤α1≤20°, and preferably α1≈12°. Such an angular relationship allows a high transfer of momentum between the rotor and the working medium. In this example, it is advantageous when the guide blade ducts have guide blade duct openings on the rotor side that lie on a cylinder circumferential surface arranged coaxially with the axis of rotation and the guide blade ducts guide the working medium in the center with a flow path that passes through the cylinder circumferential surface at a point of intersection, at which the tangent to the flow path and the tangent to the cylinder surface, which lies in a plane perpendicular to the axis of rotation, form an angle α2 to which the following applies: 5°≤α2≤20°, and preferably α2≈12°.
In some examples, it is advantageous when the rotor blades have a substantially crescent-shaped cross-sectional contour and a concave blade surface that extends from a first blade edge, which faces the guide blade ducts, to a second blade edge, which faces away from the guide blade ducts. A tangent at the first blade edge, which lies in a plane perpendicular to the axis of rotation and is applied to the concave blade surface, forms an obtuse angle =β1+90° with a straight line that passes through the first blade edge and perpendicularly intersects the axis of rotation, where 5°≤−90°≤45°, in particular 20°≤−90°≤40°, and preferably −90°≈29°. In some examples, it is advantageous if a tangent lying in a plane perpendicular to the axis of rotation and applied to the concave blade surface at the second blade edge forms an acute angle =90°−β2 with a straight line that passes through the second blade edge and perpendicularly intersects the axis of rotation, where 5°≤90°−≤90°, in particular 35°≤90°−≤35°, and preferably 90°−≈40.5°. For example, it is advantageous if the obtuse angle =⊕1+90° and the acute angle β2=90°− satisfy the following relation: <180°− (i.e., β1<β2). In this way, a particularly high energy efficiency of the turbomachine may be achieved.
It has been recognized that when the distance r2 of the first blade edge of each rotor blade, which faces the guide blade ducts, from the axis of rotation and the distance r1 of the second blade edge of each rotor blade, which faces away from the guide blade ducts, from the axis of rotation satisfy the following relation: 70%<r1/r2<80% and, preferably, r1/r2≈75%, the rotor blade ducts have a length that is favorable for working medium flowing at supersonic speed and/or a length that promotes adiabatic expansion of the working medium. It has been discovered that when the number Z of rotor blades of the rotor satisfies the relation: Z≈C×r1/r2, where C is a constant and where 70≤C≤90, torque transmission between the rotor and a working medium may be maximized without excessive flow losses.
Moreover, it has been recognized that it is conducive to the energy efficiency of the turbomachine when the distance r2 of the first blade edge of each rotor blade, which faces the guide blade ducts, from the axis of rotation and the height hE of the first blade edge of each rotor blade, which is substantially parallel to the axis of rotation, satisfy the following relation: 12%≤hE/r2≤28%.
In some examples, the blade surfaces of the rotor blades can be substantially parallel to the axis of rotation of the rotor. This enables the rotor blades to be produced in a relatively simple manner. In some examples, the rotor has a rotor blade support supporting the rotor blades and a rotationally symmetrical guide contour, against which working medium may flow to deflect a flow path for working medium between the rotor ducts and a diffuser. In examples where the guide contour of the blade support extends into the diffuser, turbulence in the working medium emerging from the rotor blade ducts may be avoided. In some example turbomachines, rotor blades can be fixed releasably on the rotor blade support or can be connected materially (e.g., integral or adhered) to the rotor blade support. In some examples, it is advantageous when the guide blade ducts in the housing of the turbomachine are formed by spiral guide blades, which are mounted on an annular guide blade support, covered by a cover and have a convex blade surface that faces away from the axis of rotation. In some examples, the guide blade and the guide blade support are connected materially. In some examples, the guide blades have blade surfaces which are parallel to the axis of rotation. In some examples, the distance between two adjacent guide blades can increase in a direction of flow of the working medium toward the rotor ducts. In some examples, the height of the guide blades decreases with increasing distance from the axis of rotation (e.g., at least as far as a constriction at a defined radial distance from the axis of rotation). In some examples, the guide blade support and the cover preferably define a compensating space, which is open toward the housing duct, opens into the guide blade ducts and has a cross section that tapers in a direction toward the axis of rotation.
In some examples, the guide blade support and the guide blades are manufactured from a one-piece flanged socket by erosion, milling and/or electrolytic machining, thereby enabling low-cost production. In some examples, the turbomachine is suitable, in particular, for use in an ORC process or a compressor to compress a gaseous medium containing organic constituents.
As set forth herein, one example turbomachine includes a housing having a housing duct for the inflow or outflow of working medium and a rotor positioned to be rotatable about an axis of rotation and having a multiplicity of rotor blades that define rotor blade ducts, where the rotor blade ducts fluidly communicate with the housing duct via guide blade ducts that are fixed in relation to the housing and have a guide blade duct opening on the rotor side and a guide blade duct opening on the housing duct side.
In some examples, the guide blade ducts have a concave wall surface that faces the rotor and which working medium can flow against. In some examples, the guide blade ducts have a convex wall surface that faces away from the rotor and which working medium can flow against. In some examples, the guide blade ducts have a constriction and a divergent cross section between the constriction and the guide blade duct opening on the rotor side. In some examples, the guide blade ducts have a convergent cross section between the constriction and the guide blade duct opening on the housing duct side. In some examples, the guide blade ducts have a width that increases from the constriction toward the guide blade duct opening on the rotor side in a plane perpendicular to the axis of rotation in a region between the guide blade duct opening on the housing duct side and the guide blade duct opening on the rotor side. In some examples, the guide blade ducts have a height that increases from the constriction toward the guide blade duct opening on the rotor side in relation to a plane perpendicular to the axis of rotation between the guide blade duct opening on the housing duct side and the guide blade duct opening on the rotor side.
In some examples, the guide blade ducts each have a center line spaced apart uniformly from a wall surface facing the rotor and a wall surface facing away from the rotor, the center line dividing the cross-sectional profile of a guide blade duct into a segment on the housing duct side and a segment on the rotor side, where the cross-sectional profile of each guide blade duct is asymmetrical in relation to the center line. In some examples, the segment on the housing duct side and the segment on the rotor side each have a free cross-sectional area for the passage of working medium, and where the free cross-sectional area of the segment on the rotor side is larger than the free cross-sectional area of the segment on the housing duct side. In some examples, the guide blade duct openings on the housing duct side lie on a cylindrical circumferential surface positioned coaxially with the axis of rotation, and the guide blade ducts guide the working medium in the center with a flow path that passes through the cylinder circumferential surface at a point of intersection at which the tangent to the flow path and the tangent to the cylinder circumferential surface form an angle α1 to which the following applies: 5°≤α1≤20°, where the tangent to the cylinder circumferential surface lies in a plane perpendicular to the axis of rotation.
In some examples, the guide blade duct openings are located in an outward circumference of the rotor. In some examples, the guide blade duct openings on the rotor side lie on a cylinder circumferential surface positioned coaxially with the axis of rotation and guide the working medium in the center with a flow path that passes through the cylinder circumferential surface at a point of intersection at which the tangent to the flow path and the tangent to the cylinder circumferential surface form an angle α2 to which the following applies: 5°≤α2≤20°, where the tangent to the cylinder circumferential surface lies in a plane perpendicular to the axis of rotation. In some examples, the rotor blades have a substantially crescent-shaped cross-sectional contour and a concave blade surface that extends from a first blade edge, which faces the guide blade ducts, to a second blade edge, which faces away from the guide blade ducts, where a tangent lying in a plane perpendicular to the axis of rotation and applied to the concave blade surface at the first blade edge forms an obtuse angle: :=β1+90° with a straight line that passes through the first blade edge and perpendicularly intersects the axis of rotation, where 5°≤−90°≤45°.
In some examples, a tangent lying in a plane perpendicular to the axis of rotation and applied to the concave blade surface at the second blade edge forms an acute angle: :=90°−β2 with a straight line that passes through the second blade edge and perpendicularly intersects the axis of rotation, where 5°≤90°−≤90°. In some examples, the obtuse angle :=β1+90° and the acute angle :=90°−β2 satisfy the following relation: <180°−. In some examples, the blade surface of the rotor blades are substantially parallel to the axis of rotation. In some examples, the distance r2 of the first blade edge of each rotor blade, which faces the guide blade ducts, from the axis of rotation and the distance r1 of the second blade edge of each rotor blade, which faces away from the guide blade ducts, from the axis of rotation satisfy the following relation: 70%<r1/r2<80%.
In some examples, the number Z of rotor blades of the rotor satisfies the following relation: Z≈C·r1/r2, where the distance r2 of the first blade edge of each rotor blade, which faces the guide blade ducts, from the axis of rotation and the distance r1 of the second blade edge of each rotor blade, the second blade edge facing away from the guide blade ducts, from the axis of rotation, where C is a constant and 70≤C≤90. In some examples, the distance r2 of the first blade edge of each rotor blade, the first blade edge facing the guide blade ducts, from the axis of rotation and the height of the first blade edge of each rotor blade, the height being parallel to the axis of rotation, satisfy the following relation: 12%≤hE/r2≤28%. In some examples, the rotor has a rotor blade support to support the rotor blades and a rotationally symmetrical guide contour, against which working medium can flow and which deflects a flow path for the working medium between the rotor blade ducts and a diffuser space. In some examples, the guide contour extends into the diffuser space. In some examples, where the rotor blades are fixed releasably on the rotor blade support. In some examples, the rotor blades and the rotor blade support are coupled or integrally formed from a solid material by one or more of turning, erosion, milling or electrolytic machining of the solid material. In some examples, the guide blade ducts in the housing are formed spiral guide blades, which are mounted on an annular guide blade support, covered by a cover and have a convex blade surface facing away from the axis of rotation.
In some examples, the guide blade support and the guide blades are coupled or manufactured from a one-piece flanged socket by one or more of erosion, milling or electrolytic machining. In some examples, the guide blades have blade surfaces that are parallel to the axis of rotation. In some examples, the distance between two adjacent guide blades increases in a direction of flow of the working medium toward the rotor blade ducts. In some examples, where the height of the guide blades decreases with increasing distance from the axis of rotation. In some examples, the guide blade support and the cover define a compensating space, which is open toward the housing duct, opens into the guide blade ducts and has a cross section that tapers in a direction toward the axis of rotation. In some examples, the turbomachine is used as a turbine in an Organic Rankine Cycle process or as a compressor for compressing gaseous medium.
Another example turbomachine includes a rotor rotatable about an axis of rotation and having rotor blade ducts, a housing having housing ducts to allow the inflow or outflow of working medium and guide blade ducts fixed in the housing, where the rotor blade ducts are in fluid communication with the housing ducts via the guide blade ducts.
In some examples, the guide blade ducts in the housing are formed by spiral guide blades, which are mounted on an annular guide blade support, covered by a cover and have a convex blade surface facing away from the axis of rotation. In some examples, the guide blade support and the guide blades are coupled or integral with one another. In some examples, the guide blades have blade surfaces that are substantially parallel to the axis of rotation.
Although certain example methods, apparatus and articles of manufacture have been disclosed herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the claims of this patent.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 117 593 | Nov 2011 | DE | national |
20 2011 107 502 U | Nov 2011 | DE | national |
This patent arises from a continuation-in-part of International Patent Application No. PCT/EP2012/071774, which was filed on Nov. 2, 2012, which claims priority to German Patent Application No. 20 2011 107 502, which was filed on Nov. 3, 2011, and German Patent Application 10 2011 117 593, which was also filed on Nov. 3, 2011. The foregoing International Patent Application and German Patent Applications are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2021289 | Caylor | Nov 1935 | A |
2524549 | Theimer | Oct 1950 | A |
2694950 | Guentsche | Nov 1954 | A |
3378229 | Erwin | Apr 1968 | A |
3761195 | Eskeli | Sep 1973 | A |
4150918 | Theis, Jr. | Apr 1979 | A |
4177005 | Bozung | Dec 1979 | A |
4729715 | Wilde | Mar 1988 | A |
7574862 | Giselmo | Aug 2009 | B2 |
8043052 | Konter | Oct 2011 | B2 |
9097258 | Hofer | Aug 2015 | B2 |
9447723 | Hirth | Sep 2016 | B2 |
20030002975 | Dudebout | Jan 2003 | A1 |
20090290974 | Bayere | Nov 2009 | A1 |
20100158665 | Hofer | Jun 2010 | A1 |
20130004329 | Shiraichi | Jan 2013 | A1 |
20130309071 | Hunter | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
2733066 | Aug 1978 | DE |
102006005843 | May 2007 | DE |
1127684 | Sep 1968 | GB |
2009264106 | Nov 2009 | JP |
2013064674 | May 2013 | WO |
Entry |
---|
Patent Coooperation Treaty, “International Preliminary Report on Patentability,” issued by the International Searching Authority in connection with PCT Application No. PCT/EP2012/071774, dated May 6, 2014, 1 page. |
Patent Coooperation Treaty, “Written Opinion of the International Searching Authority,” issued by the International Searching Authority in connection with PCT Application No. PCT/EP2012/071774, dated May 6, 2014, 6 pages. |
Patent Coooperation Treaty, “International Search Report,” issued by the International Searching Authority in connection with PCT application No. PCT/EP2012/071774, dated Jun. 19, 2013, 6 pages. |
Patent Coooperation Treaty, “Written Opinion,” issued by the International Searching Authority in connection with PCT application No. PCT/EP2012/071774, dated Jun. 19, 2013, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20140234094 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2012/071774 | Nov 2012 | US |
Child | 14266283 | US |