Turbomolecular pump

Information

  • Patent Grant
  • 6217278
  • Patent Number
    6,217,278
  • Date Filed
    Thursday, July 23, 1998
    25 years ago
  • Date Issued
    Tuesday, April 17, 2001
    23 years ago
Abstract
A turbomolecular pump comprising a rotor and a stator housed in a casing and an exhaust mechanism is formed between the rotor and the stator; wherein the turbomolecular pump has a valve body for opening and closing a suction port provided in the casing, and a valve driving mechanism for opening/closing-driving the valve body, wherein the valve driving mechanism is provided integrally with the turbomolecular pump.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a turbomolecular pump for exhausting a gas by an interaction between a rotor and a stator and/or by an action of threaded rotor rotating at a high speed.




A general construction of a conventional turbomolecular pump is illustrated in FIG.


4


. The turbomolecular pump comprises a rotor R including a main shaft


10


and a rotary cylinder


12


rotating integrally therewith, a stator S including a fixed cylinder


14


surrounding the shaft


10


, and a cylindrical casing


16


surrounding the rotary cylinder


12


, which are assembled on a base B. A conductance adjusting valve


100


and a gate valve


110


are provided between the pump and an apparatus A to be evacuated in the upstream of the turbomolecular pump.




In the conventional turbomolecular pump as described above, however, driving mechanisms


101


,


102


for the individual valve units are provided in the proximity of the valves near the turbomolecular pump. This has posed a problem of scaling-up of the valve units, resulting in a larger overall structure of the turbomolecular pump including the valves.




SUMMARY OF THE INVENTION




In view of the problem described above, the present invention was made and has an object to provide a turbomolecular pump which enables a compact construction of the overall apparatus to be realized including the valve units.




To achieve the above object, according to a first aspect of the invention a turbomolecular pump is provided which comprises a rotor and a stator housed in a casing and an exhaust mechanism is formed between the rotor and the stator; wherein the turbomolecular pump has a valve body for opening and closing a suction port provided in the casing, and a valve driving mechanism for opening/closing driving the valve body, wherein the valve driving mechanism is provided integrally with the turbomolecular pump. This makes it possible to achieve a compact overall construction including the valve units.




According to a second aspect of the invention, in a turbomolecular pump according to the first aspect, the valve driving mechanism is so constructed that it drives the valve body in the axial direction of the rotor. By this arrangement, it is possible to achieve a simple construction of the entire valve unit which does not require a large space for installation thereof, since the valve body is opened or closed by lifting or lowering the valve body relative to the suction port.




According to a third aspect of the invention, in a turbomolecular pump according to the first aspect, the valve driving mechanism is provided outside the stator.




According to a fourth aspect of the invention, in a turbomolecular pump according to the first aspect, the valve driving mechanism is provided at the center portion of the suction port.




According to a fifth aspect of the invention, in a turbomolecular pump according to any one of the above aspects, the valve driving mechanism is provided so as to make the degree of opening of the valve body adjustable. This permits simultaneous functioning of valve units as a gate valve and a conductance adjusting valve, thus allowing further simplification and space saving.




According to the present invention, as described above, since the valve driving mechanism is provided integrally with the turbomolecular pump, it is possible to connect the suction port of the turbomolecular pump directly to a duct or the like of an apparatus to be evacuated. In addition, because the valve driving unit can drive a valve supporting member which supports the valve body in the axial direction of the rotor, the structure of the valve unit and the valve driving mechanism can be made far simpler. It is therefore possible to provide a turbomolecular pump having a compact overall construction, including the valve units.




The above and other objects, features and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings in which preferred embodiments of the present invention are shown by way of illustrative examples.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a sectional view illustrating a turbomolecular pump of a first embodiment of the invention;





FIG. 2

is a sectional view illustrating a turbomolecular pump of a second embodiment of the invention;





FIG. 3

is a sectional view illustrating a turbomolecular pump of a third embodiment of the invention; and





FIG. 4

is a sectional view illustrating a conventional turbomolecular pump.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Preferred embodiments of the present invention will now be described with reference to the drawings. The turbomolecular pump of a first embodiment of the invention shown in

FIG. 1

comprises a rotor R including a main shaft


10


and a rotary cylinder


12


fixed thereto for rotating integrally with the main shaft, a stator S including a fixed cylinder


14


surrounding the main shaft


10


, and a cylindrical casing


16


surrounding the rotary cylinder


12


and fixed to the stator S which, in turn, is fixed to a base B. A disk-shaped valve body


20


is provided on a suction port


18


of the casing


16


for opening and closing the suction port


18


.




A driving motor


22


is provided between the main shaft


10


and the fixed cylinder


14


for rotaing the shaft. An upper radial bearing


24


and a lower radial bearing


26


are provided on an upper and lower side of the driving motor


22


, respectively, for rotatably supporting the shaft. In the lower portion of the main shaft


10


, a target disk


28


is fixed at the lower end of the main shaft, and an axial bearing


32


is formed by the target disk


28


and upper and lower coils


30


fixed to the stator S. By this arrangement the rotor R can rotate at a high speed under active control along the axis by the action of the driving motor


22


.




Rotary blades


34


are formed integrally with the rotary cylinder


12


on the outer periphery of the upper portion thereof so as to form impellers


36


. On the inner surface of the casing


16


, on the other hand, fixed blades


38


are provided alternately with the rotary blades


34


, with a spacer interposed therebetween. There is therefore formed a blade exhaust section


40


between the rotary blades


34


and the fixed blades


38


and gas exhaust action is accomplished through interaction of the rotary blades


34


rotating at high speed and the stationary blades


38


.




A cylindrical screw thread portion


42


extending downward along the outer periphery of the fixed cylinder


14


is integrally formed with the rotary cylinder


12


, and a screw thread


44


is formed on the outer peripheral surface of the screw thread portion


42


. A thread spacer


46


surrounding the outer periphery of the screw thread portion


42


is provided on the stator S. As a result, a screw-thread exhaust section


48


which performs gas exhaust action under drag action created by the screw thread


44


of the screw thread portion


42


rotating at a high speed is formed between the blade exhaust section


40


and an exhaust port


49


.




Valve driving units


70


for driving the valve body


20


in the axial direction of the rotor R are attached to fixing members


74


, which extend from a flange


72


of the cylindrical casing


16


and are arranged circumferentially at equal intervals. Throughholes


76


are formed circumferentially spaced around the flange


72


. A plurality of valve rods


78


connecting the peripheral portion of the valve body


20


and the valve driving units


70


are inserted into the throughhole


76


. An O-ring


56


is provided on the flange surface to maintain air-tightness when the valve body


20


is closed against the suction port


18


. Actuators for the valve driving units


70


may comprise a piston cylinder unit operated by hydraulic pressure or pneumatic pressure or a ball screw unit driven by a motor.




According to the construction and arrangement as described above, the valve body


20


can be operated to open or close the suction port


18


under operation of the actuator of the driving unit


70


, and conductance can be adjusted by controlling the valve opening of the valve body


20


. As illustrated, the turbomolecular pump can be directly attached to a duct


58


or the like of the apparatus A to be evacuated without interposing valve unit therebetween as shown in FIG.


4


. Since the actuator of the valve driving units


70


drives the valve body


20


in the axial direction of the rotor R, the construction of the valve units and the driving mechanism can be made far simpler. It is therefore possible to provide a more compact turbomolecular pump as a whole, and use it effectively in a narrow space such as a clean room.





FIG. 2

illustrates a second embodiment of the invention wherein only one valve rod


50


is provided at the center thereof, and a valve driving unit


70




a


is supported at the center portion of a suction port


18


by an arm or arms


82


extending from the casing


16


. In an ordinary turbomolecular pump, the center portion of the suction port is provided with a space into which the rotor R does not extend. In this embodiment, this space is used to house the valve driving unit


70




a.


In this case, however, since the valve driving unit


70




a


is installed within a vacuum evacuating system, the valve driving unit


70




a


is required to have as small sliding portion as possible to avoid contamination. Thus, an electromagnetic driving means could be preferably used.





FIG. 3

illustrates a third embodiment of the invention. In this embodiment, an actuator for a valve driving unit


70




b


is formed into a cylindrical shape forming a part of a casing, and a plurality of valve rods


50


are attached thereto. The valve rods


50


are housed in a space between an inner casing


16




a


and an outer casing


16




b.


In this embodiment, since the actuator of the valve driving unit


70




b


has a large capacity, it is possible to perform stable and positive opening/closing operations.




As described above, according to the present invention, since the valve driving mechanism is provided integrally with the turbomolecular pump, it is possible to connect the suction port of the turbomolecular pump directly to a duct or the like of an apparatus to be evacuated. In addition, since the valve driving unit drives the valve supporting member supporting the valve body in the axial direction of the rotor, the structure of the valve unit and the valve driving mechanism can be made far simple. It is therefore possible to provide a turbomolecular pump having a compact overall construction including the valve units.



Claims
  • 1. A turbomolecular pump comprising:a casing for supporting a stator; a rotor rotatably mounted in the stator and drivable by a motor; the stator surrounding the rotor; an exhaust mechanism formed between the rotor and the stator; the suction port, associated with the exhaust mechanism, located in the casing; a valve body provided on the suction port for opening and closing the suction port; and a valve driving mechanism, for driving the valve body, associated with the casing and positioned thereon at a location below a top of the suction port to provide a compact turbomolecular pump.
  • 2. A turbomolecular pump according to claim 1, wherein said valve driving mechanism drives said valve body in the axial direction of said rotor.
  • 3. A turbomolecular pump according to claim 1, wherein said valve driving mechanism is provided outside said stator.
  • 4. A turbomolecular pump according to claim 1, wherein said valve driving mechanism comprises a plurality of valve driving units which are circumferentially spaced around the outer surface of said casing.
  • 5. A turbomolecular pump according to claim 4, wherein said valve driving units are connected to said valve body through a plurality of valve rods extending through throughholes formed in a flange provided on said casing at the suction port thereof.
  • 6. A turbomolecular pump according to claim 1, wherein said valve driving mechanism is formed to have a cylindrical shape forming a part of said casing with a plurality of valve rods being attached thereto.
  • 7. A turbomolecular pump according to claim 6, wherein said casing includes an inner casing and an outer casing and said valve rods are housed in a space between said inner and outer casings.
  • 8. A turbomolecular pump according to any one of claims 1 or 2-7, wherein said valve driving mechanism is provided so as to make the degree of opening of said valve body adjustable.
  • 9. A turbomolecular pump according to any one of claims 1 to 7, wherein said valve driving mechanism comprises a piston cylinder unit operated by hydraulic pressure or pneumatic pressure, a ball screw unit driven by a motor or a electromagnetic driving means.
  • 10. A molecular pump comprising:a casing for supporting a stator; a rotor rotatably mounted in the stator and drivable by a motor; the stator surrounding the rotor; an exhaust mechanism formed between the rotor and the stator; the suction port, associated with the exhaust mechanism, located at the top of the casing; a valve body provided on the suction port for opening and closing the suction port; said valve body having a diameter larger than said suction port; and a valve driving mechanism for driving the valve body up and down in the axial direction of said rotor; wherein an opening is formed between said valve body and a flange provided at said suction port when said valve body is moved upwardly.
  • 11. A turbomolecular pump according to claim 10, wherein said valve driving mechanism is provided at the center portion of said suction port.
  • 12. A turbomolecular pump according to claim 11, wherein said valve driving mechanism is supported by an arm or arms extending from said casing.
Priority Claims (1)
Number Date Country Kind
9-215645 Jul 1997 JP